Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Genes Dev ; 34(23-24): 1637-1649, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184219

RESUMO

Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm-/- ) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Células Germinativas Embrionárias/efeitos da radiação , Células Germinativas/efeitos da radiação , Mutação/genética , Radiação Ionizante , Animais , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Elementos de DNA Transponíveis/efeitos da radiação , Células Germinativas Embrionárias/citologia , Feminino , Masculino , Meiose/genética , Meiose/efeitos da radiação , Camundongos , Oócitos/citologia , Oócitos/efeitos da radiação , Gravidez , RNA Interferente Pequeno/metabolismo , Fatores Sexuais
2.
Mol Cell ; 76(2): 346-358, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31561953

RESUMO

DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Animais , Pontos de Checagem do Ciclo Celular , Morte Celular , Proliferação de Células , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Humanos , Mitose , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Trends Biochem Sci ; 46(4): 301-314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33279370

RESUMO

Cell cycle checkpoints secure ordered progression from one cell cycle phase to the next. They are important to signal cell stress and DNA lesions and to stop cell cycle progression when severe problems occur. Recent work suggests, however, that the cell cycle control machinery responds in more subtle and sophisticated ways when cells are faced with naturally occurring challenges, such as replication impediments associated with endogenous replication stress. Instead of following a stop and go approach, cells use fine-tuned deceleration and brake release mechanisms under the control of ataxia telangiectasia and Rad3-related protein kinase (ATR) and checkpoint kinase 1 (CHK1) to more flexibly adapt their cell cycle program to changing conditions. We highlight emerging examples of such intrinsic cell cycle checkpoint regulation and discuss their physiological and clinical relevance.


Assuntos
Proteínas de Ciclo Celular , Proteínas Quinases , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , Fosforilação , Proteínas Quinases/metabolismo
4.
Trends Genet ; 38(8): 787-788, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490031

RESUMO

Unscheduled tetraploidy is a metastable state that rapidly evolves into aneuploidy. Recent findings reported by Gemble et al. demonstrate that freshly formed tetraploid cells fail to accumulate the required amounts of DNA replication factors during the first G1 phase after whole-genome duplication (WGD), culminating in genetic instability in the subsequent S phase and extensive karyotypic alterations.


Assuntos
Replicação do DNA , Tetraploidia , Aneuploidia , Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Humanos , Mitose , Fase S
5.
Mol Cell ; 65(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939942

RESUMO

Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/enzimologia , Genótipo , Células HEK293 , Humanos , Mutação , Proteínas Nucleares/genética , Estresse Oxidativo , Fenótipo , Fosforilação , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
6.
Cell Mol Life Sci ; 79(12): 601, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36422718

RESUMO

Ataxia telangiectasia is a rare neurodegenerative disease caused by biallelic mutations in the ataxia telangiectasia mutated gene. No cure is currently available for these patients but positive effects on neurologic features in AT patients have been achieved by dexamethasone administration through autologous erythrocytes (EryDex) in phase II and phase III clinical trials, leading us to explore the molecular mechanisms behind the drug action. During these investigations, new ATM variants, which originated from alternative splicing of ATM messenger, were discovered, and detected in vivo in the blood of AT patients treated with EryDex. Some of the new ATM variants, alongside an in silico designed one, were characterized and examined in AT fibroblast cell lines. ATM variants were capable of rescuing ATM activity in AT cells, particularly in the nuclear role of DNA DSBs recognition and repair, and in the cytoplasmic role of modulating autophagy, antioxidant capacity and mitochondria functionality, all of the features that are compromised in AT but essential for neuron survival. These outcomes are triggered by the kinase and further functional domains of the tested ATM variants, that are useful for restoring cellular functionality. The in silico designed ATM variant eliciting most of the functionality recover may be exploited in gene therapy or gene delivery for the treatment of AT patients.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Processamento Alternativo
7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047751

RESUMO

After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.


Assuntos
Quinase 1 do Ponto de Checagem , Dano ao DNA , Desenvolvimento Embrionário , Animais , Quinase 1 do Ponto de Checagem/metabolismo , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/genética
8.
J Biol Chem ; 296: 100455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33636182

RESUMO

The checkpoint kinase ATR regulates DNA repair, cell cycle progression, and other DNA damage and replication stress responses. ATR signaling is stimulated by an ATR activating protein, and in metazoan cells, there are at least two ATR activators: TOPBP1 and ETAA1. Current evidence indicates TOPBP1 and ETAA1 activate ATR via the same biochemical mechanism, but several aspects of this mechanism remain undefined. For example, ATR and its obligate binding partner ATR interacting protein (ATRIP) form a tetrameric complex consisting of two ATR and two ATRIP molecules, but whether TOPBP1 or ETAA1 dimerization is similarly required for ATR function is unclear. Here, we show that fusion of the TOPBP1 and ETAA1 ATR activation domains (AADs) to dimeric tags makes them more potent activators of ATR in vitro. Furthermore, induced dimerization of both AADs using chemical dimerization of a modified FKBP tag enhances ATR kinase activation and signaling in cells. ETAA1 forms oligomeric complexes mediated by regions of the protein that are predicted to be intrinsically disordered. Induced dimerization of a "mini-ETAA1" protein that contains the AAD and Replication Protein A (RPA) interaction motifs enhances ATR signaling, rescues cellular hypersensitivity to DNA damaging agents, and suppresses micronuclei formation in ETAA1-deficient cells. Together, our results indicate that TOPBP1 and ETAA1 dimerization is important for optimal ATR signaling and genome stability.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Dimerização , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Transdução de Sinais/fisiologia
9.
Prostate ; 82(2): 182-192, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672379

RESUMO

BACKGROUND: Despite multiple treatment advances for castration-resistant prostate cancer (CRPC), there are currently no curative therapies and patients ultimately to succumb to the disease. Docetaxel (DTX) is the standard first-line chemotherapy for patients with metastatic CRPC; however, drug resistance is inevitable and often develops rapidly, leading to disease progression in nearly all patients. In contrast, when DTX is deployed with androgen deprivation therapy in castration-sensitive disease, more durable responses and improved outcomes are observed, suggesting that aberrant androgen receptor (AR) signaling accelerates DTX resistance in CRPC. In this study, we demonstrate that AR dysregulates the mitotic checkpoint, a critical pathway involved in the anticancer action of DTX. METHODS: Androgen-dependent and independent cell lines were used to evaluate the role of AR in DTX resistance. Impact of drug treatment on cell viability, survival, and cell-cycle distribution were determined by plate-based viability assay, clonogenic assay, and cell-cycle analysis by flow cytometry, respectively. Mitotic checkpoint kinase signal transduction and apoptosis activation was evaluated by Western blotting. Pathway gene expression analysis was evaluated by RT-PCR. A Bliss independence model was used to calculate synergy scores for drug combination studies. RESULTS: Activation of AR in hormone-sensitive cells induces a rescue phenotype by increasing cell viability and survival and attenuating G2/M arrest in response to DTX. Analysis of mitotic checkpoint signaling shows that AR negatively regulates spindle checkpoint signaling, resulting in premature mitotic progression and evasion of apoptosis. This phenotype is characteristic of mitotic slippage and is also observed in CRPC cell lines where we demonstrate involvement of AR splice variant AR-v7 in dysregulation of checkpoint signaling. Our findings suggest that DTX resistance is mediated through mechanisms that drive premature mitotic exit. Using pharmacologic inhibitors of anaphase-promoting complex/cyclosome and polo-like kinase 1, we show that blocking mitotic exit induces mitotic arrest, apoptosis, and synergistically inhibits cell survival in combination with DTX. CONCLUSION: Our results suggest that targeting the mechanisms of dysregulated mitotic checkpoint signaling in AR-reactivated tumors has significant clinical potential to extend treatment benefit with DTX and improve outcomes in patients with lethal prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Pontos de Checagem do Ciclo Celular , Docetaxel/farmacologia , Neoplasias de Próstata Resistentes à Castração , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo
10.
Respir Res ; 23(1): 190, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840978

RESUMO

BACKGROUND: As a DNA surveillance mechanism, cell cycle checkpoint has recently been discovered to be closely associated with lung adenocarcinoma (LUAD) prognosis. It is also an essential link in the process of DNA damage repair (DDR) that confers resistance to radiotherapy. Whether genes that have both functions play a more crucial role in LUAD prognosis remains unclear. METHODS: In this study, DDR-related genes with cell cycle checkpoint function (DCGs) were selected to investigate their effects on the prognosis of LUAD. The TCGA-LUAD cohort and two GEO external validation cohorts (GSE31210 and GSE42171) were performed to construct a prognosis model based on the least absolute shrinkage and selection operator (LASSO) regression. Patients were divided into high-risk and low-risk groups based on the model. Subsequently, the multivariate COX regression was used to construct a prognostic nomogram. The ssGSEA, CIBERSORT algorithm, TIMER tool, CMap database, and IC50 of chemotherapeutic agents were used to analyze immune activity and responsiveness to chemoradiotherapy. RESULTS: 4 DCGs were selected as prognostic signatures, and patients in the high-risk group had a lower overall survival (OS). The lower infiltration levels of immune cells and the higher expression levels of immune checkpoints appeared in the high-risk group. The damage repair pathways were upregulated, and chemotherapeutic agent sensitivity was poor in the high-risk group. CONCLUSIONS: The 4-DCGs signature prognosis model we constructed could predict the survival rate, immune activity, and chemoradiotherapy responsiveness of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Pontos de Checagem do Ciclo Celular , Quimiorradioterapia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Prognóstico
11.
Pharmacol Res ; 178: 106162, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259479

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have become a mainstay of therapy in ovarian cancer and other malignancies, including BRCA-mutant breast, prostate, and pancreatic cancers. However, a growing number of patients develop resistance to PARPis, highlighting the need to further understand the mechanisms of PARPi resistance and develop effective treatment strategies. Targeting cell cycle checkpoint protein kinases, e.g., ATR, CHK1, and WEE1, which are upregulated in response to replication stress, represents one such therapeutic approach for PARPi-resistant cancers. Mechanistically, activated cell cycle checkpoints promote cell cycle arrest, replication fork stabilization, and DNA repair, demonstrating the interplay of DNA repair proteins with replication stress in the development of PARPi resistance. Inhibitors of these cell cycle checkpoints are under investigation in PARPi-resistant ovarian and other cancers. In this review, we discuss the cell cycle checkpoints and their roles beyond mere cell cycle regulation as part of the arsenal to overcome PARPi-resistant cancers. We also address the current status and recent advancements as well as limitations of cell cycle checkpoint inhibitors in clinical trials.


Assuntos
Antineoplásicos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Neoplasias Ovarianas , Proteínas Tirosina Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo
12.
Semin Cell Dev Biol ; 86: 121-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577982

RESUMO

Our genomic DNA is found predominantly in a double-stranded helical conformation. However, there are a number of cellular transactions and DNA damage events that result in the exposure of single stranded regions of DNA. DNA transactions require these regions of single stranded DNA, but they are only transient in nature as they are particularly susceptible to further damage through chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. To protect these exposed regions of single stranded DNA, all living organisms have members of the Single Stranded DNA Binding (SSB) protein family, which are characterised by a conserved oligonucleotide/oligosaccharide-binding (OB) domain. In humans, three such proteins members have been identified; namely the Replication Protein A (RPA) complex, hSSB1 and hSSB2. While RPA is extremely well characterised, the roles of hSSB1 and hSSB2 have only emerged recently. In this review, we discuss the critical roles that hSSB1 plays in the maintenance of genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/genética , Humanos
13.
J Biol Chem ; 295(37): 12946-12961, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32675286

RESUMO

The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Raios Ultravioleta
14.
J Cell Biochem ; 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33876852

RESUMO

The American Cancer Society predicted more than 52 000 new cases of thyroid cancer in 2020, making it the most prevalent endocrine malignancy. Due to the approximately threefold higher incidence of thyroid cancer in women, we hypothesize that androgens and/or androgen receptors play a protective role and that thyroid cancer in men represents an escape from androgen-mediated cell regulation. The analysis of androgen receptor (AR) expression in patient tissue samples identified a 2.7-fold reduction in AR expression (p < 0.005) in papillary thyroid cancer compared with matched, normal tissue. An in vitro cell model was developed by stably transfecting AR into 8505C undifferentiated thyroid cancer cells (resulting in clone 84E7). The addition of DHT to the clone 84E7 resulted in AR translocation into the nucleus and a 70% reduction in proliferation, with a shift in the cell cycle toward G1 arrest. RNASeq analysis revealed significant changes in mRNA levels associated with proliferation, cell cycle, and cell cycle regulation. Furthermore, androgen significantly decreased the levels of the G1-associated cell cycle progression proteins cdc25a CDK6 CDK4 and CDK2 as well as increased the levels of the cell cycle inhibitors, p27 and p21. The data strongly suggest that DHT induces a G1 arrest in androgen-responsive thyroid cancer cells. Together, these data support our hypothesis that AR/androgen may play a protective, antiproliferative role and are consistent with younger men having a lower incidence of thyroid cancer than women.

15.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 726-738, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33913495

RESUMO

The cellular response to DNA damage is crucial for maintaining the integrity and stability of molecular structure. To maintain genome stability, DNA-damaged cells should be arrested so that mutations can be repaired before replication. Although several key components required for this arrest have been discovered, the majority of the pathways are still unclear. Through a number of assays, including cell viability, colony formation, and apotheosis assay, we found that AKR1B10 protected cells from UVC-induced DNA damage. Surprisingly, UVC-induced γH2AX foci and DNA double-strand breaks in the AKR1B10-overexpressing cells were ∼4-5 folds lower than those in the control group. The expression levels of AKR1B10, p53, chk1, chk2, nuclear factor (NF)-κB, and p65 showed dynamic changes in response to UVC irradiation. Our results suggested that AKR1B10 is involved in the pathway of cell cycle checkpoint and NF-κB in DNA damage. Taken together, our results suggest that AKR1B10 is involved in the repair of the DNA double-strand break, which provides a new insight into the role of AKR1B10 in DNA damage repair and indicates a new trail in tumorigenesis and cancer drug resistance.


Assuntos
Aldo-Ceto Redutases/metabolismo , Neoplasias da Mama/metabolismo , Dano ao DNA/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Aldo-Ceto Redutases/genética , Apoptose/efeitos da radiação , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/genética , Feminino , Vetores Genéticos/genética , Histonas/metabolismo , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(16): E3837-E3845, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610335

RESUMO

DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA/genética , Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Fatores de Transcrição E2F/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Domínios Proteicos
17.
Acta Med Okayama ; 75(4): 415-421, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34511607

RESUMO

Human RAD17, as an agonist of checkpoint signaling, plays an essential role in mediating DNA damage. This hospital-based case-control study aimed to explore the association between RAD17 rs1045051, a missense sin-gle nucleotide polymorphism (SNP), and prostate cancer risk. Subjects were 358 prostate cancer patients and 314 cancer-free urology patients undergoing treatment at the Zhujiang Hospital of Southern Medical University in China. RAD17 gene polymorphism rs1045051 was evaluated by the SNaPshot method. Compared with the RAD17 gene polymorphism rs1045051 AA genotype, there was a higher risk of prostate cancer for the CC gen-otype (adjusted odds ratio [AOR] = 1.731, 95% confidence interval [95%CI] = 1.031-2.908, p = 0.038). Compared with the A allele, the C allele was significantly associated with the disease status (AOR = 1.302, 95%CI = 1.037-1.634, p = 0.023). All these findings indicate that in the SNP rs1045051, both the CC genotype and C allele may have a substantial influence on the prostate cancer risk.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular , Neoplasias da Próstata/genética , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Dano ao DNA/genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/sangue
18.
Genes Dev ; 27(14): 1610-23, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873943

RESUMO

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , Ativação Enzimática , Humanos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Xenopus
19.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502313

RESUMO

During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the polα-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , DNA Polimerase I/genética , Resistência a Medicamentos/genética , Hidroxiureia/farmacologia , Mutação , Proteínas Serina-Treonina Quinases/deficiência , Antidrepanocíticos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular , Dano ao DNA , Fosforilação
20.
Hum Mutat ; 41(3): 608-618, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31729086

RESUMO

Nijmegen breakage syndrome caused by biallelic pathogenic variants of the DNA-damage response gene NBN, is characterized by severe microcephaly, cancer proneness, infertility, and karyotype abnormalities. We previously reported NBN variants in siblings suffering from fertility defects. Here, we identify a new founder NBN variant (c.442A>G, p.(Thr148Ala)) in Lebanese patients associated with isolated infertility. Functional analyses explored preserved or altered functions correlated with their remarkably mild phenotype. Transcript and protein analyses supported the use of an alternative transcript with in-frame skipping of exons 4-5, leading to p84-NBN protein with a preserved forkhead-associated (FHA) domain. The level of NBN was dramatically reduced and the MRN complex delocalized to the cytoplasm. Interestingly, ataxia-elangiectasia mutated (ATM) also shifted from the nucleus to the cytoplasm, suggesting some interaction between ATM and the MRN complex at a steady state. The ATM pathway activation, attenuated in typical patients with NBS, appeared normal under camptothecin treatment in these new NBN-related infertile patients. Cell cycle checkpoint defect was present in these atypical patients, although to a lesser extent than in typical patients with NBS. In conclusion, we report three new NBN-related infertile patients and we suggest that preserved FHA domain could be responsible for the mild phenotype and intermediate DNA-damage response defects.


Assuntos
Proteínas de Ciclo Celular/genética , Reparo do DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Infertilidade/diagnóstico , Infertilidade/genética , Proteínas Nucleares/genética , Adulto , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Análise Mutacional de DNA , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Humanos , Infertilidade/metabolismo , Masculino , Síndrome de Quebra de Nijmegen/diagnóstico , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa