Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Circulation ; 149(23): 1833-1851, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38586957

RESUMO

BACKGROUND: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS: Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS: RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS: We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.


Assuntos
Aspartato-Amônia Ligase , Desdiferenciação Celular , Fator 4 Semelhante a Kruppel , Miócitos Cardíacos , Animais , Camundongos , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Células Cultivadas , Miócitos Cardíacos/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
2.
FASEB J ; 37(10): e23174, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37668416

RESUMO

Sry-box9 (SOX9) maintains stem cell properties and plays crucial roles in many cancers. However, whether SOX9 is correlated with cervical cancer cell stemness and its detailed mechanism remains obscure. We studied the relationship between SOX9 and prognosis of cervical cancer through public database, and SOX9 was related to poor prognosis of cervical cancer. Elevated SOX9 expression enhanced the self-renewal properties and promotes tumorigenicity in cervical cancer. Overexpression of SOX9 could promote the expression of stem cell-related factors in cervical cancer cells and xenografts. Meanwhile, overexpression of SOX9 could also enhance the expressions of FZD10, ß-catenin, and c-Myc in cervical cancer cells and xenografts, while inhibiting the expression of DDK1. The activation of Wnt pathway by chir-99 021 raised the tumor spheroid ability of SOX9 knockdown HeLa cells. In addition, SOX9 could transcriptional inhibit DKK1 and activate FZD10 and MYC by binding to their promoters to affect the Wnt/ß-catenin pathway. These results demonstrated SOX9 regulated the self-renewal and tumorigenicity of cervical cancer through Wnt/ß-catenin pathway by directly transcriptional activation of FZD10, MYC and transcriptional inhibition of DKK1.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Regulação para Cima , Ativação Transcricional , Via de Sinalização Wnt , beta Catenina/genética , Células HeLa , Fatores de Transcrição SOX9/genética
3.
Biochem Soc Trans ; 51(5): 1847-1856, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800560

RESUMO

Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.


Assuntos
Diapausa , Animais , Humanos , Reprodução , Longevidade
4.
Breast Cancer Res ; 24(1): 72, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307864

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a critical underpinning process for cancer progression, recurrence and resistance to drug treatment. Identification of new regulators of EMT could lead to the development of effective therapies to improve the outcome of advanced cancers. In the current study we discovered, using a variety of in vitro and in vivo approaches, that RAB4A function is essential for EMT and related manifestation of stemness and invasive properties. Consistently, RAB4A suppression abolished the cancer cells' self-renewal and tumor forming ability. In terms of downstream signaling, we found that RAB4A regulation of EMT is achieved through its control of activation of the RAC1 GTPase. Introducing activated RAC1 efficiently rescued EMT gene expression, invasion and tumor formation suppressed by RAB4A knockdown in both the in vitro and in vivo cancer models. In summary, this study identifies a RAB4A-RAC1 signaling axis as a key regulatory mechanism for the process of EMT and cancer progression and suggests a potential therapeutic approach to controlling these processes.


Assuntos
Neoplasias da Mama , Proteínas rac1 de Ligação ao GTP , Humanos , Feminino , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais
5.
Development ; 146(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31515205

RESUMO

PUF RNA-binding proteins have diverse roles in animal development, with a broadly conserved role in stem cells. Two paradigmatic PUF proteins, FBF-1 and FBF-2, promote both self-renewal and differentiation in the C. elegans germline. The LST-1 protein is a pivotal regulator of self-renewal and is oncogenic when mis-expressed. Here, we demonstrate that LST-1 self-renewal activity resides within a predicted disordered region that harbors two KXXL motifs. We find that the KXXL motifs mediate the binding of LST-1 to FBF, and that point mutations of these motifs abrogate LST-1 self-renewal activity. The LST-1-FBF partnership is therefore crucial to stem cell maintenance and is a key element in the FBF regulatory network. A distinct region within LST-1 determines its spatial expression and size of the GSC pool. Most importantly, the molecular understanding of how an IDR-rich protein works in an essential partnership with a conserved stem cell regulator and RNA-binding protein suggests broad new avenues for combinatorial control.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Células-Tronco/citologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Biológicos , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
6.
Inflamm Res ; 69(7): 631-633, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32303780

RESUMO

OBJECTIVE AND DESIGN: CHRFAM7A is a unique human gene that encodes a dominant negative inhibitor of the α7 nicotinic acetylcholine receptor. We have recently shown that CHRFAM7A is expressed in human leukocytes, increases cel-cell adhesion, and regulates the expression of genes associated with leukocyte migration. MATERIAL: Human THP-1, RAW264.7 and HEK293 cells. METHODS: Cell migration, cell proliferation and colony formation in soft agar to compare the biological activity of vector vs. CHRFAM7A-transduced cells. RESULTS: We show that gene delivery of CHRFAM7A into the THP-1 human monocytic cell line reduces cell migration, reduces chemotaxis to monocyte chemoattractant protein, and reduces colony formation in soft agar. CONCLUSION: Taken together, the findings demonstrate that CHRFAM7A regulates the biological activity of monocytes/macrophages to migrate and undergo anchorage-independent growth in vitro.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Animais , Adesão Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Leucócitos , Macrófagos/fisiologia , Camundongos , Monócitos/fisiologia , Células RAW 264.7 , Células-Tronco/fisiologia , Células THP-1 , Transdução Genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
7.
J Cell Biochem ; 120(3): 3716-3726, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30206984

RESUMO

Mouse embryonic stem cells (mESCs) have the capability to undergo unlimited cell division and differentiate into derivatives of all three embryonic germ layers. These fundamental features enable mESCs to potentially be appropriate, efficient models for biological and medical research. Therefore, it is essential to produce high-performance mESCs. In the current study, we have produced mESCs from blastocysts that developed from fertilized oocytes of 2 (2-C57)-, 4 (4-C57)-, and 6 (6-C57)-month-old C57BL/6 mice. A comparison of isolated stem cells was done from the viewpoint of the efficiency of mESC derivation, self-renewal, and their differentiation capacity. All generated mESCs showed a similar expression of the molecular markers protein of pluripotency and AP activity. In the 3i medium, there was a significant decrease in undifferentiated marker genes expression in the 2-C57 cells compared with the other two groups ( P < 0.05) but developmental genes significantly increased in the 4-C57 and 6-C57 cells compared with the 2-C57 cells ( P < 0.05). The differentiation capacity into three germ layers through the embryoid body formation and percentage of cell lines with normal numbers of chromosomes reduced with increased maternal age. The highest DT and highest percentage of cells in the S phase belonged to 2-C57 cells. These data demonstrated that blastocysts which developed from fertilized oocytes of 2-, 4-, and 6-month-old C57BL/6 mice can generate pluripotent stem cells, and suggested that both the efficiency of mESC isolation and the behavior of these isolated mESCs including pluripotency, self-renewal, cell cycle, and DT changed with increasing maternal age.


Assuntos
Antígenos de Diferenciação/biossíntese , Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Fase S , Animais , Blastocisto/citologia , Linhagem Celular , Feminino , Camundongos , Células-Tronco Embrionárias Murinas/citologia
8.
Am J Respir Crit Care Med ; 197(7): 885-896, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29211494

RESUMO

RATIONALE: Up to 40% of smokers develop chronic obstructive pulmonary disease (COPD) over a period that spans decades. Despite the importance of COPD, much remains to be learned about susceptibility and pathogenesis, especially during early, prediagnostic stages of disease. Airway basal progenitor cells are crucial for lung health and resilience because of their ability to repair injured airways. In COPD, the normal airway epithelium is replaced with increased basal and secretory (mucous) cells and decreased ciliated cells, suggesting that progenitors are impaired. OBJECTIVES: To examine airway basal progenitor cells and lung function in smokers with and without COPD. METHODS: Bronchial biopsies taken from smokers at risk for COPD and lung cancer were used to acquire airway basal progenitor cells. They were evaluated for count, self-renewal, and multipotentiality (ability to differentiate to basal, mucous, and ciliated cells), and progenitor count was examined for its relationship with lung function. MEASUREMENTS AND MAIN RESULTS: Basal progenitor count, self-renewal, and multipotentiality were all reduced in COPD versus non-COPD. COPD progenitors produced an epithelium with increased basal and mucous cells and decreased ciliated cells, replicating the COPD phenotype. Progenitor depletion correlated with lung function and identified a subset of subjects without COPD with lung function that was midway between non-COPD with high progenitor counts and those with COPD. CONCLUSIONS: Basal progenitor dysfunction relates to the histologic and physiologic manifestations of COPD and identifies a subset that may represent an early, prediagnostic stage of COPD, indicating that progenitor exhaustion is involved in COPD pathogenesis.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/patologia , Células-Tronco/patologia , Biópsia , Estudos Transversais , Progressão da Doença , Epitélio/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Índice de Gravidade de Doença , Fumantes , Fumar/efeitos adversos , Tempo
9.
Adv Exp Med Biol ; 1169: 119-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487022

RESUMO

Adult female mammals are endowed with the unique ability to produce milk for nourishing their newborn offspring. Milk is secreted on demand by the mammary gland, an organ which develops during puberty, further matures during pregnancy and lactation, but reverts to a resting state after weaning. The glandular tissue (re)generated through this series of structural and functional changes is finely sourced by resident stem cells under the control of systemic hormones and local stimuli.Over the past decades a plethora of studies have been carried out in order to identify and characterize mammary stem cells, primarily in mice and humans. Intriguingly, it is now emerging that multiple mammary stem cell pools (co)exist and are characterized by distinctive molecular markers and context-dependent functions.This chapter reviews the heterogeneity of the mammary stem cell compartment with emphasis on the key properties and molecular regulators of distinct stem cell populations in both the mouse and human glands.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Células-Tronco , Animais , Diferenciação Celular , Feminino , Humanos , Lactação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Gravidez , Células-Tronco/citologia
10.
Dev Dyn ; 247(1): 47-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28643345

RESUMO

Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Neurogênese/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Metabolismo Energético/fisiologia , Células-Tronco Neurais/metabolismo
11.
Stem Cells ; 35(7): 1733-1746, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28436144

RESUMO

Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or in pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. Unacylated ghrelin (UnAG) is a circulating hormone that protects muscle from atrophy, promotes myoblast differentiation, and enhances ischemia-induced muscle regeneration. Here we show that UnAG increases SC activity and stimulates Par polarity complex/p38-mediated asymmetric division, fostering both SC self-renewal and myoblast differentiation. Because of those activities on different steps of muscle regeneration, we hypothesized a beneficial effect of UnAG in mdx dystrophic mice, in which the absence of dystrophin leads to chronic muscle degeneration, defective muscle regeneration, fibrosis, and, at later stages of the pathology, SC pool exhaustion. Upregulation of UnAG levels in mdx mice reduces muscle degeneration, improves muscle function, and increases dystrophin-null SC self-renewal, maintaining the SC pool. Our results suggest that UnAG has significant therapeutic potential for preserving the muscles in dystrophies. Stem Cells 2017;35:1733-1746.


Assuntos
Distrofina/genética , Grelina/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , Acilação , Animais , Contagem de Células , Diferenciação Celular , Distrofina/metabolismo , Fibrose , Regulação da Expressão Gênica , Grelina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Fenótipo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Stem Cells ; 34(7): 1859-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26972179

RESUMO

Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871.


Assuntos
Envelhecimento/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Compartimento Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/deficiência
13.
Development ; 140(15): 3079-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23861057

RESUMO

Cyclin-dependent kinases (Cdks) are serine/threonine kinases and their catalytic activities are modulated by interactions with cyclins and Cdk inhibitors (CKIs). Close cooperation between this trio is necessary for ensuring orderly progression through the cell cycle. In addition to their well-established function in cell cycle control, it is becoming increasingly apparent that mammalian Cdks, cyclins and CKIs play indispensable roles in processes such as transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions and spermatogenesis. Even more remarkably, they can accomplish some of these tasks individually, without the need for Cdk/cyclin complex formation or kinase activity. In this Review, we discuss the latest revelations about Cdks, cyclins and CKIs with the goal of showcasing their functional diversity beyond cell cycle regulation and their impact on development and disease in mammals.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Ciclinas/fisiologia , Sequência de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Reparo do DNA , Epigênese Genética , Humanos , Masculino , Dados de Sequência Molecular , Neurônios/fisiologia , Proteólise , Espermatogênese , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica
14.
Iran J Basic Med Sci ; 27(9): 1187-1196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055876

RESUMO

Objectives: Enhancement of proliferation, pluripotency, and self-renewal capacity as the unique features of MSCs can improve their therapeutic potential to regenerate tissues. In this context, crocin and curcumin, carotenoid compounds with outstanding medicinal properties, could be promising for cell protection and growth. This study aimed to evaluate the impact of nanocurcumin and crocin on BM-MSCs proliferation and pluripotency in vitro. Materials and Methods: BM-MSC were isolated from the iliac crest of SCI patients who were candidates for stem cell therapy. The effect of crocin and nanocurcumin on MSC proliferation was evaluated using MTT and PDT assay. The percentage of apoptotic MSCs was measured by flow cytometry. Furthermore, mRNA and protein expression of OCT4 and SOX2 as the proliferation and self-renewal related genes were quantified by real-time PCR and western blotting, respectively. Results: Our findings demonstrated that only low concentrations of nanocurcumin (0.3 and 0.7 µM) and crocin (2.5 5 µM) significantly affected MSCs proliferation and protected them from apoptosis. Also, crocin and nanocurcumin at low doses caused an elevation in the mRNA and protein expression levels of OCT4 and SOX2 genes. In contrast, high concentrations decreased the survival of MSCs and led to increased apoptosis compared with the untreated group. Conclusion: Our results suggest that using nanocurcumin and crocin separately in culturing MSCs can be considered proliferative agents to prepare the more advantageous tool for cell therapies. However, more in vitro and preclinical research is needed in this area.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660875

RESUMO

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Assuntos
Transplante de Medula Óssea , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Microambiente Celular , Medula Óssea , Ratos
16.
Cell Prolif ; 55(1): e13173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952996

RESUMO

OBJECTIVES: Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. MATERIALS AND METHODS: Flies were used to generate tissue-specific gene knockdown and gene knockout. qRT-PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA-seq was used to screen downstream mechanisms. RESULTS: Here, we report a member of the chloride channel family, ClC-c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC-c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. CONCLUSION: Our findings reveal an ISC-specific function of ClC-c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Proliferação de Células , Regulação para Baixo/genética , Endossomos/metabolismo , Mucosa Intestinal/citologia , Necrose , Regeneração , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
J Korean Neurosurg Soc ; 64(3): 367-373, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906340

RESUMO

Secondary neurulation (SN) is a critical process to form the neural tube in the posterior region of the body including the tail. SN is distinct from the anteriorly occurring primary neurulation (PN); whereas the PN proceeds by folding an epithelial neural plate, SN precursors arise from a specified epiblast by epithelial-to-mesenchymal transition (EMT), and undergo self-renewal in the tail bud. They finally differentiate into the neural tube through mesenchymal-to-epithelial transition (MET). We here overview recent progresses in the studies of SN with a particular focus on the regulation of cell lineage, self-renewal, and EMT/MET. Cellular mechanisms underlying SN help to understand the functional diversity of the tail in vertebrates.

18.
Stem Cell Investig ; 8: 21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815976

RESUMO

BACKGROUND: Intrinsic factors related to self-renewal regulatory factors in hematopoietic stem cells are well known; however, limited information is available on extrinsic factors, such as the cell environment. Therefore, in this study, we analyzed the regulatory mechanism of hematopoietic stem cell self-renewal, focusing on the osteoblastic niche, and examined how adherence to osteoblasts affects stem cell differentiation. METHODS: For this experimental study, we developed a co-culture system for hematopoietic stem cells and osteoblasts, such that cells adhered to osteoblasts can be separated from those that do not. Murine Sca1-positive cells were separated into groups according to whether they were attached to osteoblasts or detached from osteoblasts, and each group was then subjected to colony assays and bone marrow transplantation experiments. RESULTS: Adhered Sca1-positive cells developed more secondary colonies than non-adhered Sca1-positive cells. Furthermore, in bone marrow transplantation experiments, adhered Sca1-positive cells showed successful engraftment. We explored the role of Polycomb genes in the regulation of cell fate and found that self-renewing cells attached to osteoblasts had high Bmi-1 expression and low Mel-18 expression, while this expression was reversed in differentiating cells. CONCLUSIONS: Our results suggest that hematopoietic stem cells self-renew when they remain in osteoblastic niches after cell division. Further, when stem cells leave the niches, they undergo differentiation.

19.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34170818

RESUMO

Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Trofoblastos/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
20.
Cell Stem Cell ; 28(6): 1057-1073.e7, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571444

RESUMO

Skeletal aging is a complex process, characterized by a decrease in bone formation, an increase in marrow fat, and stem cell exhaustion. Loss of H3K9me3, a heterochromatin mark, has been proposed to be associated with aging. Here, we report that loss of KDM4B in mesenchymal stromal cells (MSCs) exacerbated skeletal aging and osteoporosis by reducing bone formation and increasing marrow adiposity via increasing H3K9me3. KDM4B epigenetically coordinated ß-catenin/Smad1-mediated transcription by removing repressive H3K9me3. Importantly, KDM4B ablation impaired MSC self-renewal and promoted MSC exhaustion by inducing senescence-associated heterochromatin foci formation, providing a mechanistic explanation for stem cell exhaustion with aging. Moreover, while KDM4B was required for parathyroid hormone-mediated bone anabolism, KDM4B depletion accelerated bone loss and marrow adiposity induced by a high-fat diet. Our results suggest that the epigenetic rejuvenation and reversing bone-fat imbalance might be new strategies for preventing and treating skeletal aging and osteoporosis by activating KDM4B in MSCs.


Assuntos
Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Osteogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa