Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 33(21-22): 1457-1459, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676733

RESUMO

The Hippo pathway is an evolutionarily conserved kinase cascade that is fundamental for tissue development, homeostasis, and regeneration. In the developing mammalian heart, Hippo signaling regulates cardiomyocyte numbers and organ size. While cardiomyocytes in the adult heart are largely postmitotic, Hippo deficiency can increase proliferation of these cells and affect cardiac regenerative capacity. Recent studies have also shown that resident cardiac fibroblasts play a critical role in disease responsiveness and healing, and in this issue of Genes and Development, Xiao and colleagues (pp. 1491-1505) demonstrate that Hippo signaling also integrates the activity of fibroblasts in the heart. They show that Hippo signaling normally maintains the cardiac fibroblast in a resting state and, conversely, its inactivation during disease-related stress results in a spontaneous transition toward a myofibroblast state that underlies fibrosis and ventricular remodeling. This phenotypic switch is associated with increased cytokine signaling that promotes nonautonomous resident fibroblast and myeloid cell activation.


Assuntos
Negociação , Proteínas Serina-Treonina Quinases , Animais , Proliferação de Células , Fibroblastos , Fibrose , Miócitos Cardíacos
2.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558567

RESUMO

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Assuntos
Fibroblastos/citologia , Fibrose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Fibrose/fisiopatologia , Deleção de Genes , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteínas de Sinalização YAP
3.
Semin Cancer Biol ; 96: 48-63, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788736

RESUMO

Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.


Assuntos
Carcinoma , Melanoma , Humanos , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Diferenciação Celular/genética , Fenótipo
4.
EMBO J ; 39(12): e103558, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32395844

RESUMO

Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.


Assuntos
Animais Geneticamente Modificados/embriologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Biológicos , MicroRNAs/metabolismo , Neurogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Semelhante a ELAV 3/genética , Proteína Semelhante a ELAV 3/metabolismo , MicroRNAs/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34932803

RESUMO

A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.


Assuntos
Linhagem da Célula/genética , Regiões Promotoras Genéticas/genética , Proteínas/genética , RNA/genética , Adesão Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Junções Intercelulares/genética , Biologia de Sistemas
6.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30257965

RESUMO

An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an in vitro model for early mouse embryonic development: from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Germinativas/fisiologia , Ácidos Cetoglutáricos/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Pluripotentes/fisiologia
7.
Stem Cells ; 38(2): 202-217, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675135

RESUMO

Cooperative actions of extrinsic signals and cell-intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type ß (TGFß) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell-type specific and context-dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFß system. To understand intrafamily transcriptional regulation as part of this system's actions during development, we selected 95 of its components and investigated their mRNA-expression dynamics, gene-gene interactions, and single-cell expression heterogeneity in mouse embryonic stem cells transiting to neural progenitors. Interrogation at 24 hour intervals identified four types of temporal gene transcription profiles that capture all stages, that is, pluripotency, epiblast formation, and neural commitment. Then, between each stage we performed esiRNA-based perturbation of each individual component and documented the effect on steady-state mRNA levels of the remaining 94 components. This exposed an intricate system of multilevel regulation whereby the majority of gene-gene interactions display a marked cell-stage specific behavior. Furthermore, single-cell RNA-profiling at individual stages demonstrated the presence of detailed co-expression modules and subpopulations showing stable co-expression modules such as that of the core pluripotency genes at all stages. Our combinatorial experimental approach demonstrates how intrinsically complex transcriptional regulation within a given pathway is during cell fate/state transitions.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Humanos
8.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611015

RESUMO

Inducing apoptosis in cancer cells is a primary goal in anti-cancer therapy, but curing cancer with a single drug is unattainable due to drug resistance. The complex molecular network in cancer cells causes heterogeneous responses to single-target drugs, thereby inducing an adaptive drug response. Here, we showed that targeted drug perturbations can trigger state conflicts between multi-stable motifs within a molecular regulatory network, resulting in heterogeneous drug responses. However, we revealed that properly regulating an interconnecting molecule between these motifs can synergistically minimize the heterogeneous responses and overcome drug resistance. We extracted the essential cellular response dynamics of the Boolean network driven by the target node perturbation and developed an algorithm to identify a synergistic combinatorial target that can reduce heterogeneous drug responses. We validated the proposed approach using exemplary network models and a gastric cancer model from a previous study by showing that the targets identified with our algorithm can better drive the networks to desired states than those with other control theories. Of note, our approach suggests a new synergistic pair of control targets that can increase cancer drug efficacy to overcome adaptive drug resistance.

9.
Trends Cell Biol ; 33(11): 913-923, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37263821

RESUMO

Acquisition of omics data advances at a formidable pace. Yet, our ability to utilize these data to control cell phenotypes and design interventions that reverse pathological states lags behind. Here, we posit that cell states are determined by core networks that control cell-wide networks. To steer cell fate decisions, core networks connecting genotype to phenotype must be reconstructed and understood. A recent method, cell state transition assessment and regulation (cSTAR), applies perturbation biology to quantify causal connections and mechanistically models how core networks influence cell phenotypes. cSTAR models are akin to digital cell twins enabling us to purposefully convert pathological states back to physiologically normal states. While this capability has a range of applications, here we discuss reverting oncogenic transformation.


Assuntos
Transformação Celular Neoplásica , Redes Reguladoras de Genes , Humanos , Diferenciação Celular , Fenótipo , Genótipo
10.
Cell Rep ; 42(3): 112202, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871220

RESUMO

In developing embryos, specific cell populations are often removed to remodel tissue architecture for organogenesis. During urinary tract development, an epithelial duct called the common nephric duct (CND) gets shortened and eventually eliminated to remodel the entry point of the ureter into the bladder. Here we show that non-professional efferocytosis (the process in which epithelial cells engulf apoptotic bodies) is the main mechanism that contributes to CND shortening. Combining biological metrics and computational modeling, we show that efferocytosis with actomyosin contractility are essential factors that drive the CND shortening without compromising the ureter-bladder structural connection. The disruption of either apoptosis, non-professional efferocytosis, or actomyosin results in contractile tension reduction and deficient CND shortening. Actomyosin activity helps to maintain tissue architecture while non-professional efferocytosis removes cellular volume. Together our results demonstrate that non-professional efferocytosis with actomyosin contractility are important morphogenetic factors controlling CND morphogenesis.


Assuntos
Actomiosina , Células Epiteliais , Fagocitose , Epitélio , Morfogênese
11.
Front Microbiol ; 13: 1050516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824587

RESUMO

The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.

12.
Cell Syst ; 6(1): 37-51.e9, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29153838

RESUMO

Modern single-cell technologies allow multiplexed sampling of cellular states within a tissue. However, computational tools that can infer developmental cell-state transitions reproducibly from such single-cell data are lacking. Here, we introduce p-Creode, an unsupervised algorithm that produces multi-branching graphs from single-cell data, compares graphs with differing topologies, and infers a statistically robust hierarchy of cell-state transitions that define developmental trajectories. We have applied p-Creode to mass cytometry, multiplex immunofluorescence, and single-cell RNA-seq data. As a test case, we validate cell-state-transition trajectories predicted by p-Creode for intestinal tuft cells, a rare, chemosensory cell type. We clarify that tuft cells are specified outside of the Atoh1-dependent secretory lineage in the small intestine. However, p-Creode also predicts, and we confirm, that tuft cells arise from an alternative, Atoh1-driven developmental program in the colon. These studies introduce p-Creode as a reliable method for analyzing large datasets that depict branching transition trajectories.


Assuntos
Citometria por Imagem/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , RNA/metabolismo , Análise de Sequência de RNA/métodos
13.
Bioinform Biol Insights ; 11: 1177932217712241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659714

RESUMO

Many normal and cancerous cell lines exhibit a stable composition of cells in distinct states which can, e.g., be defined on the basis of cell surface markers. There is evidence that such an equilibrium is associated with stochastic transitions between distinct states. Quantifying these transitions has the potential to better understand cell lineage compositions. We introduce CellTrans, an R package to quantify stochastic cell state transitions from cell state proportion data from fluorescence-activated cell sorting and flow cytometry experiments. The R package is based on a mathematical model in which cell state alterations occur due to stochastic transitions between distinct cell states whose rates only depend on the current state of a cell. CellTrans is an automated tool for estimating the underlying transition probabilities from appropriately prepared data. We point out potential analytical challenges in the quantification of these cell transitions and explain how CellTrans handles them. The applicability of CellTrans is demonstrated on publicly available data on the evolution of cell state compositions in cancer cell lines. We show that CellTrans can be used to (1) infer the transition probabilities between different cell states, (2) predict cell line compositions at a certain time, (3) predict equilibrium cell state compositions, and (4) estimate the time needed to reach this equilibrium. We provide an implementation of CellTrans in R, freely available via GitHub (https://github.com/tbuder/CellTrans).

14.
Trends Cell Biol ; 24(5): 275-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24370212

RESUMO

Pluripotent cells have the potential to differentiate into all of the cell types of an animal. This unique cell state is governed by an interconnected network of transcription factors. Among these, Oct4 plays an essential role both in the development of pluripotent cells in the embryo and in the self-renewal of its in vitro counterpart, embryonic stem (ES) cells. Furthermore, Oct4 is one of the four Yamanaka factors and its overexpression alone can generate induced pluripotent stem (iPS) cells. Recent reports underscore Oct4 as an essential regulator of opposing cell state transitions, such as pluripotency establishment and differentiation into embryonic germ lineages. Here we discuss these recent studies and the potential mechanisms underlying these contrasting functions of Oct4.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 3 de Transcrição de Octâmero/fisiologia , Animais , Reprogramação Celular , Epigênese Genética , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa