Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Ther ; 32(9): 2892-2904, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39068512

RESUMO

Immune-based therapeutic interventions recognizing proteins localized on the cell surface of cancer cells are emerging as a promising cancer treatment. Antibody-based therapies and engineered T cells are now approved by the Food and Drug Administration to treat some malignancies. These therapies utilize a few cell surface proteins highly expressed on cancer cells to release the negative regulation of immune activation that limits antitumor responses (e.g., PD-1, PD-L1, CTLA4) or to redirect the T cell specificity toward blood cancer cells (e.g., CD19 and B cell maturation antigen). One limitation preventing broader application of these novel therapeutic strategies to all cancer types is the lack of suitable target antigens for all indications owing in part to the challenges in identifying such targets. Ideal target antigens are cell surface proteins highly expressed on malignant cells and absent in healthy tissues. Technological advances in mass spectrometry, enrichment protocols, and computational tools for cell surface protein isolation and annotation have recently enabled comprehensive analyses of the cancer cell surface proteome, from which novel immunotherapeutic target antigens may emerge. Here, we review the most recent progress in this field.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Neoplasias , Proteoma , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Animais , Proteômica/métodos , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo
2.
Expert Rev Proteomics ; 21(1-3): 99-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300624

RESUMO

INTRODUCTION: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.


The cell surface contains many important proteins such as receptors and transporters. These proteins are responsible for cells to communicate with each other, take nutrients from outside, and interact with their surroundings. Aberrant changes in surface protein expression, modifications, and interactions with other molecules directly result in various diseases, including infections, immune disorders, and cancer. Currently, mass spectrometry (MS)-based proteomics is very powerful to study proteins on a large scale, and there has been a strong interest in employing MS to investigate cell-surface proteins. In this review, we discuss different methods combining mass spectrometry with other approaches to systematically characterize protein abundance, dynamics, modification, and interaction on the cell surface. These methods help uncover protein functions and specific cell-surface proteins related to human diseases. A better understanding of the functions and properties of cell-surface proteins can facilitate the discovery of surface proteins as effective biomarkers for disease early detection and the identification of drug targets for disease treatment.


Assuntos
Proteínas de Membrana , Processamento de Proteína Pós-Traducional , Humanos , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Glicosilação
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876743

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Assuntos
Integrinas/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Drosophila melanogaster , Endossomos/metabolismo , Feminino , Gânglios Espinais/citologia , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/etiologia
4.
Angew Chem Int Ed Engl ; 63(18): e202319232, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472118

RESUMO

Cell-surface proteins are important drug targets but historically have posed big challenges for the complete elimination of their functions. Herein, we report antibody-peptide conjugates (Ab-CMAs) in which a peptide targeting chaperone-mediated autophagy (CMA) was conjugated with commercially available monoclonal antibodies for specific cell-surface protein degradation by taking advantage of lysosomal degradation pathways. Unique features of Ab-CMAs, including cell-surface receptor- and E3 ligase-independent degradation, feasibility towards different cell-surface proteins (e.g., epidermal growth factor receptor (EGFR), programmed cell death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)) by a simple change of the antibody, and successful tumor inhibition in vivo, make them attractive protein degraders for biomedical research and therapeutic applications. As the first example employing CMA to degrade proteins from the outside in, our findings may also shed new light on CMA, a degradation pathway typically targeting cytosolic proteins.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias , Humanos , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Lisossomos/metabolismo
5.
Bioorg Chem ; 138: 106680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37336103

RESUMO

Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.


Assuntos
Neoplasias , Humanos , Nitrogênio , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
6.
J Proteome Res ; 21(2): 349-359, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978816

RESUMO

The interactions between ectodomains of cell surface proteins are vital players in many important cellular processes, such as regulating immune responses, coordinating cell differentiation, and shaping neural plasticity. However, while the construction of a large-scale protein interactome has been greatly facilitated by the development of high-throughput experimental techniques, little progress has been made to support the discovery of extracellular interactome for cell surface proteins. Harnessed by the recent advances in computational modeling of protein-protein interactions, here we present a structure-based online database for the extracellular interactome of cell surface proteins in humans, called EXCESP. The database contains both experimentally determined and computationally predicted interactions among all type-I transmembrane proteins in humans. All structural models for these interactions and their binding affinities were further computationally modeled. Moreover, information such as expression levels of each protein in different cell types and its relation to various signaling pathways from other online resources has also been integrated into the database. In summary, the database serves as a valuable addition to the existing online resources for the study of cell surface proteins. It can contribute to the understanding of the functions of cell surface proteins in the era of systems biology.


Assuntos
Proteínas de Membrana , Biologia de Sistemas , Biologia Computacional/métodos , Humanos , Proteínas de Membrana/genética , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais
7.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613715

RESUMO

Cell surface proteins, including transmembrane and other surface-anchored proteins, play a key role in several critical cellular processes and have a strong diagnostic value. The development of quick and robust experimental methods remains vital for the accurate and comprehensive characterization of the cell surface subproteome of individual cells. Here we present a high-throughput technique which relies on the biotinylation of the accessible primary amino groups in the extracellular segments of the proteins, using HL60 as a model cell line. Several steps of the method have been thoroughly optimized to capture labeled surface proteins selectively and in larger quantities. These include the following: improving the efficiency of the cell surface biotinylation; reducing the endogen protease activity; applying an optimal amount of affinity column and elution steps for labeled peptide enrichment; and examining the effect of various solid-phase extraction methods, different HPLC gradients, and various tandem mass spectrometry settings. Using the optimized workflow, we identified at least 1700 surface-associated individual labeled peptides (~6000-7000 redundant peptides) from the model cell surface in a single nanoHPLC-MS/MS run. The presented method can provide a comprehensive and specific list of the cell surface available protein segments that could be potential targets in various bioinformatics and molecular biology research.


Assuntos
Proteínas de Membrana , Espectrometria de Massas em Tandem , Biotinilação , Proteínas de Membrana/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Membrana Celular/metabolismo
8.
BMC Cancer ; 21(1): 850, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301218

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely perturbed in GBM. Additionally, since these cell surface proteins have 'direct' access to drugs, they are appealing targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet. Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could potentially be developed as novel GBM biomarkers for therapeutic purposes. METHODS: We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408) databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-confidence GBM surfaceome signature. RESULTS: Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR, ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature suggesting potential drug repurposing. CONCLUSIONS: In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Proteoma , Transcriptoma , Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Glioblastoma/patologia , Humanos , Masculino , Estadiamento de Neoplasias , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais
9.
Biotechnol Bioeng ; 118(8): 3015-3028, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33951178

RESUMO

Chinese hamster ovary (CHO) suspension cells are the main production hosts for biopharmaceuticals. For the improvement of production processes, it is essential to understand the interaction between CHO cells and their microenvironment. While the cellular membrane is the crucial surface barrier between the inner and outer cell compartments, the subgroup of cell surface proteins (surfaceome) is of particular interest due to its potential to react to external factors and initiate cell communication and interaction pathways. Therefore, the CHO surfaceome was explored for the first time by enriching exposed N-glycosylated membrane proteins before tandem mass spectrometry (MS/MS) analyses, identifying a total of 449 surface proteins, including 34 proteins specific for production cells. Functional annotation and classification located most proteins to the cell surface belonging mainly to the protein classes of receptors, enzymes, and transporters. In addition, adhesion molecules as cadherins, integrins, Ig superfamily and extracellular matrix (ECM) proteins as collagens, laminins, thrombospondin, fibronectin, and tenascin were significantly enriched, which are involved in mechanisms for the formation of cell junctions, cell-cell and cell-ECM adhesion as focal adhesions. As cell adhesion and aggregation counteracts scalable production of biopharmaceuticals, experimental validation confirmed differential expression of integrin ß1 (ITGB1) and ß3, CD44, laminin, and fibronectin on the surface of aggregation-prone CHO production cells. The subsequent modulation of the central interaction protein ITGB1 by small interfering RNA knockdown substantially counteracted cell aggregation pointing toward novel engineering routes for aggregation reduction in biopharmaceutical production cells and exemplifying the potential of the surfaceome for specified engineering strategies.


Assuntos
Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica , Animais , Células CHO , Adesão Celular , Agregação Celular , Cricetulus , Espectrometria de Massas em Tandem
10.
Angew Chem Int Ed Engl ; 60(12): 6733-6743, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33331089

RESUMO

Selective modulation of ligand-receptor interaction is essential in targeted therapy. In this study, we design an intelligent "scan and unlock" DNA automaton (SUDA) system to equip a native protein-ligand with cell-identity recognition and receptor-mediated signaling in a cell-type-specific manner. Using embedded DNA-based chemical reaction networks (CRNs) on the cell surface, SUDA scans and evaluates molecular profiles of cell-surface proteins via Boolean logic circuits. Therefore, it achieves cell-specific signal modulation by quickly unlocking the protein-ligand in proximity to the target cell-surface to activate its cognate receptor. As a proof of concept, we non-genetically engineered hepatic growth factor (HGF) with distinct logic SUDAs to elicit target cell-specific HGF signaling and wound healing behaviors in multiple heterogeneous cell types. Furthermore, the versatility of the SUDA strategy was shown by engineering tumor necrotic factor-α (TNFα) to induce programmed cell death of target cell subpopulations through cell-specific modulation of TNFR1 signaling.


Assuntos
DNA/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , DNA/química , Fator de Crescimento de Hepatócito/química , Humanos , Ligantes , Modelos Moleculares , Receptores Tipo I de Fatores de Necrose Tumoral/química , Transdução de Sinais
11.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123038

RESUMO

Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a ß-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
12.
J Proteome Res ; 19(4): 1824-1846, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32108472

RESUMO

Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Lacticaseibacillus paracasei , Probióticos , Neoplasias Colorretais/genética , Células HT29 , Resposta ao Choque Térmico , Humanos , Proteínas de Membrana/genética
13.
Am J Physiol Endocrinol Metab ; 318(4): E462-E479, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961708

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-AP) with the complete glycolipid anchor attached have previously been shown to be released from the outer plasma membrane leaflet of rat adipocytes in positive correlation to cell size and blood glucose/insulin levels of the donor rats. Furthermore, they are present in rat and human serum, however, at amounts that are lower in insulin-resistant/obese rats compared with normal ones. These findings prompted further evaluation of the potential of full-length GPI-AP for the prediction and stratification of metabolically deranged states. A comparison of the signatures of horizontal surface acoustic waves that were generated by full-length GPI-AP in the course of their specific capture by and subsequent dissociation from a chip-based sensor between those from rat serum and those reconstituted into lipidic structures strongly argues for expression of full-length GPI-AP in serum in micelle-like complexes in concert with phospholipids, lysophospholipids, and cholesterol. Both the reconstituted and the rat serum complexes were highly sensitive toward mechanical forces, such as vibration. Furthermore, full-length GPI-AP reconstituted into micelle-like complexes represented efficient substrates for cleavage by serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). These findings raised the possibility that the upregulated release of full-length GPI-AP into micelle-like serum complexes from metabolically deranged cells is compensated by elevated GPI-PLD activity. In fact, serum GPI-PLD activity toward full-length GPI-AP in micelle-like complexes, but not in detergent micelles, was positively correlated to early states of insulin resistance and obesity in genetic and diet-induced rat models as well as to the body weight in humans. Moreover, the differences in the degradation of GPI-AP in micelle-like complexes were found to rely in part on the interaction of serum GPI-PLD with an activating serum factor. These data suggest that serum GPI-PLD activity measured with GPI-AP in micelle-like complexes is indicative of enhanced release of full-length GPI-AP from relevant tissues into the circulation as a consequence of early metabolic derangement in rats and humans.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Doenças Metabólicas/metabolismo , Fosfolipase D/metabolismo , Acetilcolinesterase/metabolismo , Adipócitos/metabolismo , Animais , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Humanos , Resistência à Insulina , Lipólise , Micelas , Obesidade/metabolismo , Ratos , Regulação para Cima
14.
J Sep Sci ; 43(1): 292-312, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31521063

RESUMO

Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.


Assuntos
Proteínas de Membrana/análise , Proteoma/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas
15.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804098

RESUMO

The human gastrointestinal tract (GIT) is inhabited by a dense microbial community of symbionts. Enterococci are among the earliest members of this community and remain core members of the GIT microbiota throughout life. Enterococci have also recently emerged as opportunistic pathogens and major causes of nosocomial infections. Although recognized as a prerequisite for infection, colonization of the GIT by enterococci remains poorly understood. One way that bacteria adapt to dynamic ecosystems like the GIT is through the use of their surface proteins to sense and interact with components of their immediate environment. In Gram-positive bacteria, a subset of surface proteins relies on an enzyme called sortase for covalent attachment to the cell wall. Here, we show that the housekeeping sortase A (SrtA) enzyme promotes intestinal colonization by enterococci. Furthermore, we show that the enzymatic activity of SrtA is key to the ability of Enterococcus faecalis to bind mucin (a major component of the GIT mucus). We also report the GIT colonization phenotypes of E. faecalis mutants lacking selected sortase-dependent proteins (SDPs). Further examination of the mucin binding ability of these mutants suggests that adhesion to mucin contributes to intestinal colonization by E. faecalis.


Assuntos
Aminoaciltransferases/fisiologia , Proteínas de Bactérias/fisiologia , Parede Celular/efeitos dos fármacos , Cisteína Endopeptidases/fisiologia , Enterococcus/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Am J Physiol Endocrinol Metab ; 317(2): E212-E233, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039006

RESUMO

To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.


Assuntos
Membrana Celular/metabolismo , Dispositivos Lab-On-A-Chip , Proteínas de Membrana/metabolismo , Estimulação Acústica , Adipócitos/química , Adipócitos/metabolismo , Animais , Membrana Celular/química , Clostridium botulinum tipo A/química , Dieta Hiperlipídica , Glicosilfosfatidilinositóis/química , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Masculino , Proteínas de Membrana/análise , Obesidade/metabolismo , Fosfolipídeos/química , Ratos , Ratos Wistar , Ratos Zucker
17.
World J Microbiol Biotechnol ; 36(1): 10, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863307

RESUMO

Aggregation and adhesion capability and survival efficacy of candidate probiotic strain Pediococcus acidilactici NCDC 252 under simulated gastric, intestinal and vaginal conditions was studied. The strain exhibited strong autoaggregation phenotype and coaggregation with other Lactic acid bacteria (LAB) and E. coli. The adhesion studies of NCDC 252 to pig's intestinal epithelial cells showed its adhesive ability. Aggregation and adhesiveness were related through cell surface proteins as removal/extraction of surface proteins resulted in altered aggregation and no adhesiveness. Cell surface proteins were analysed by SDS-PAGE and also in silico analysed from its genome. SDS-PAGE analysis of cell surface proteins of NCDC 252 revealed two potential proteins of approximately 74.3 and 53.6 kDa to be involved in host-probiotic interaction. Removal of cell surface proteins by LiCl-treatment (5 mol l-1) resulted in loss of aggregation and adhesiveness. Further survival of NCDC 252 under simulated gastrointestinal and vaginal conditions in terms of high viable counts confirmed its efficacy for its survival under gut and urogenital conditions. These observations suggest that it can be used further in functional foods, nutraceuticals and in combating urogenital infections. As NCDC 252 was able to survive in intestinal conditions, interaction of its cell surface proteins with intestinal mucins was studied in silico by docking. Highest affinity of adhesion was observed for MUC3B. In conclucion, NCDC 252, exhibited aggregation phenotype and adhesion capability. Survivability of NCDC 252 under simulated conditions and its interaction with human mucins confirms its efficacy to be used as probiotic.


Assuntos
Aderência Bacteriana/fisiologia , Pediococcus acidilactici/fisiologia , Probióticos/metabolismo , Animais , Suplementos Nutricionais , Células Epiteliais/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillales/fisiologia , Proteínas de Membrana , Viabilidade Microbiana , Simulação de Acoplamento Molecular , Mucinas , Vagina/microbiologia
18.
Cytometry A ; 93(8): 803-810, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30107080

RESUMO

Flow cytometry is often performed on adherent cells or solid tissues that have been released from their growth substrate or disaggregated by enzymatic digestion. Although detection of strongly expressed cell surface proteins following such procedures indicates that many survive treatment with proteolytic enzymes, applications such as cell surface proteomics involve assessment of the expression of more than 200 proteins and it is important to know how to interpret negative results. To address this problem, we performed flow cytometry-based cell surface proteomic analysis on two non-adherent cell lines, THP1 and K562, after mock and authentic trypsin treatment, according to a widely used protocol to remove adherent cells (0.25% trypsin, 2.21 mM EDTA, 37°C, 5 min). In a single screening experiment, we examined the effect of treatment on mean fluorescence intensity and on the percent of positive cells and determined the false negative rate. Of 164 determinations that were ≥20% positive after mock treatment, 13 (7.9%) were <20% positive after trypsin treatment. Four proteins were chosen for time-course studies (performed in triplicate), confirming initial sensitivity results but revealing significant variability in the magnitude of the trypsin effect. When trypsin sensitivity of individual proteins was examined as a function of the number of predicted high probability extracellular trypsin cleavage sites, we found that the markers that yielded false negatives all had high numbers of sites (>30), but even so, the majority of proteins with high numbers of trypsin sites could still be detected after mild trypsin treatment. We conclude that the great majority of cell surface proteins can be detected after mild trypsin treatment, but that negative results should not be over-interpreted, due to the possibility of false negatives.


Assuntos
Citometria de Fluxo , Proteínas de Membrana/isolamento & purificação , Proteoma/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/genética , Proteômica/métodos , Tripsina/farmacologia
19.
Arch Biochem Biophys ; 656: 1-18, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30120921

RESUMO

Starting with the first description of the anchorage of a subset of cell surface proteins in eukaryotic cells from yeast to mammals with the aid of a glycosylphosphatidylinositol (GPI) moiety covalently attached to the carboxy-terminus of the protein, experimental evidence for the potential of GPI-anchored proteins (GPI-AP) of being released into the extracellular environment has been accumulating. GPI-AP are released as soluble monomers or multimers having lost their anchor or within hetero-/multimeric assemblies with their complete anchor remaining attached. The configurations reported so far for those assemblies encompass carrier protein-bound monomers, phospholipid- and cholesterol-harboring micelle-like complexes as well as membrane vesicles and particles. Each of these configurations prevents direct contact of the GPI anchor with the aqueous environment. Their structural diversity is reflected in the different molecular mechanisms underlying their release, which involve (i) proteolytic or lipolytic cleavage of the protein or GPI moiety, respectively, (ii) masking of the GPI anchor in the binding pocket of carrier proteins or in the phospholipid mono- or bilayers of particles or vesicles, respectively, and (iii) direct transfer of anchor-harboring GPI-AP from donor to acceptor cells through intimate contact of their plasma membranes. Release of GPI-AP may occur spontaneously or in response to certain endogenous or environmental stress signals and exert specific roles in the (patho)physiology of eukaryotic organisms which, however, are only incompletely understood so far.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Micropartículas Derivadas de Células/metabolismo , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/fisiologia , Humanos , Hidrólise , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Proteólise
20.
Proteomics ; 17(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28834292

RESUMO

Lymphocytes are immune cells that are critical for the maintenance of adaptive immunity. Differentiation of lymphoid progenitors yields B-, T-, and NK-cell subtypes that individually correlate with specific forms of leukemia or lymphoma. Therefore, it is imperative a precise method of cell categorization is utilized to detect differences in distinct disease states present in patients. One viable means of classification involves evaluation of the cell surface proteome of lymphoid malignancies. Specifically, this manuscript details the use of an antibody independent approach known as Cell Surface Capture Technology, to assess the N-glycoproteome of four human lymphocyte cell lines. Altogether, 404 cell surface N-glycoproteins were identified as markers for specific cell types involved in lymphocytic malignancies, including 82 N-glycoproteins that had not been previously been described for B or T cells within the Cell Surface Protein Atlas. Comparative analysis, hierarchical clustering techniques, and label-free quantitation were used to reveal proteins most informative for each cell type. Undoubtedly, the characterization of the cell surface proteome of lymphoid malignancies is a first step toward improving personalized diagnosis and treatment of leukemia and lymphoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Leucemia/metabolismo , Linfócitos/metabolismo , Linfoma/metabolismo , Proteoma/análise , Células Cultivadas , Humanos , Leucemia/patologia , Linfócitos/citologia , Linfoma/patologia , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa