Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Trends Genet ; 39(4): 285-307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792446

RESUMO

Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Hematológicas , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Medicina de Precisão , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/análise , Aprendizado de Máquina
2.
Cancer ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824658

RESUMO

BACKGROUND: Molecular characterization has significantly improved the management of advanced endometrial cancer (EC). It distinguishes four molecular subclasses associated with prognosis and personalized therapeutic strategies. This study assesses the clinical utility of cell-free DNA (cfDNA) profiling in EC to identify targetable alterations. METHODS: Women with metastatic or recurrent EC were prospectively recruited within the framework of the STING trial (NCT04932525), during which cfDNA was analyzed. Genomic alterations were identified with the FoundationOne CDx assay. Each molecular report underwent review by a molecular tumor board. Alterations were categorized via the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT). RESULTS: A total of 61 patients were enrolled. The median age was 66.9 years, with 43% presenting frontline metastatic disease. All histologic subgroups were represented. Notably, 89% of patients yielded informative cfDNA analysis. Six tumors were classified with deficient mismatch repair/microsatellite instability (11%) and 37 as TP53 gene mutant (67%), and 12 had nonspecific molecular profiles (22%). Molecular classification based on liquid biopsy showed 87.5% accuracy in correlating with tissue results. Moreover, 65% of cases exhibited ≥1 actionable alteration, including 25% ESCAT I alterations and 13% ESCAT II alterations. Consequently, 16% of patients received a molecularly matched therapy, and presented with a 56% response rate and median progression-free survival of 7.7 months. CONCLUSIONS: cfDNA sequencing in EC is a feasible approach that produces informative results in 89% of cases and accurately categorizes patients into the main molecular subclasses. It also reveals multiple actionable alterations, which offers the potential for personalized therapeutic strategies.

3.
Tumour Biol ; 46(s1): S297-S308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37840517

RESUMO

The cumulative pool of cell-free DNA (cfDNA) molecules within bodily fluids represents a highly dense and multidimensional information repository. This "biological mirror" provides real-time insights into the composition, function, and dynamics of the diverse genomes within the body, enabling significant advancements in personalized molecular medicine. However, effective use of this information necessitates meticulous classification of distinct cfDNA subtypes with exceptional precision. While cfDNA molecules originating from different sources exhibit numerous genetic, epigenetic, and physico-chemical variations, they also share common features that complicate analyses. Considerable progress has been achieved in mapping the landscape of cfDNA features, their clinical correlations, and optimizing extraction procedures, analytical approaches, bioinformatics pipelines, and machine learning algorithms. Nevertheless, preanalytical workflows, despite their profound impact on cfDNA measurements, have not progressed at a corresponding pace. In this perspective article, we emphasize the pivotal role of robust preanalytical procedures in the development and clinical integration of cfDNA assays, highlighting persistent obstacles and emerging challenges.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Biologia Computacional , Medicina de Precisão
4.
Jpn J Clin Oncol ; 54(6): 681-688, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38476004

RESUMO

BACKGROUND: EGFR mutation testing is required for treatment of lung adenocarcinoma using epidermal growth factor receptor-tyrosine kinase inhibitor. However, the amounts of tumor tissue or tumor cells obtained by bronchoscopy are often insufficient. Bronchial washing fluid, obtained by lavage with saline after tumor biopsy or brushing, and the supernatant of bronchial washing fluid are thought to contain cell-free DNA that would be potentially applicable for EGFR testing. METHODS: From among patients with suspected adenocarcinoma or non-small cell lung carcinoma diagnosed from biopsy or surgical specimens at the University of Tsukuba Hospital between 2015 and 2019, cell-free DNAs from 80 specimens of supernatant of bronchial washing fluid (50 with EGFR mutation and 30 with wild type EGFR) and 8 blood serum samples were examined for EGFR mutation using droplet digital PCR. RESULTS: Among the 50 patients harboring EGFR mutation, the rate of positivity for cell-free DNA extracted from supernatant of bronchial washing fluid was 80% (40/50). In nine of the EGFR mutation-positive cases, tumor cells were not detected by either biopsy or cytology, but the mutation was detected in four cases (4/9, 44%). Comparison of the cell-free DNA mutation detection rate between supernatant of bronchial washing fluid and blood serum in six cases showed that mutations were detected from the former in all cases (6/6, 100%), but from the latter in only one case (1/6, 17%). CONCLUSIONS: Using supernatant of bronchial washing fluid samples, the detection rate of EGFR mutation was high, and EGFR mutations were detectable even when no tumor cells had been detectable by biopsy or cytology. Supernatant of bronchial washing fluid might be an effective sample source for EGFR mutation testing.


Assuntos
Líquido da Lavagem Broncoalveolar , Ácidos Nucleicos Livres , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Feminino , Masculino , Idoso , Líquido da Lavagem Broncoalveolar/química , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Idoso de 80 Anos ou mais , Genótipo , Análise Mutacional de DNA/métodos , Técnicas de Genotipagem , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adulto
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000323

RESUMO

Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.


Assuntos
Armadilhas Extracelulares , Interleucina-8 , Neutrófilos , Humanos , Armadilhas Extracelulares/metabolismo , Interleucina-8/metabolismo , Interleucina-8/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neutrófilos/metabolismo , Neutrófilos/imunologia , Queimaduras/imunologia , Queimaduras/metabolismo , Queimaduras/complicações , Queimaduras/patologia , Queimaduras/sangue , Sepse/metabolismo , Sepse/imunologia , Sepse/sangue , Idoso
6.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063215

RESUMO

Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioblastoma , Células Neoplásicas Circulantes , Humanos , Glioblastoma/diagnóstico , Glioblastoma/sangue , Glioblastoma/patologia , Biópsia Líquida/métodos , Biomarcadores Tumorais/sangue , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/líquido cefalorraquidiano
7.
J Cell Biochem ; 124(2): 188-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563059

RESUMO

In peripheral blood, cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA), which indicates molecular abnormalities in metastatic breast tumor tissue. The sequencing of cfDNA of Metastatic Breast Cancer (MBC) patients allows assessment of therapy response and noninvasive treatment. In the proposed study, clinically significant alterations in PIK3CA and TP53 genes associated with MBC resulting in a missense substitution of His1047Arg and Arg282Trp from an next-generation sequencing-based multi-gene panel were reported in a cfDNA of a patient with MBC. To investigate the impact of the reported mutation, we used molecular docking, molecular dynamics simulation, network analysis, and pathway analysis. Molecular Docking analysis determined the distinct binding pattern revealing H1047R-ATP complex has a higher number of Hydrogen bonds (H-bonds) and binding affinity with a slight difference compared to the PIK3CA-ATP complex. Following, molecular dynamics simulation for 200 ns, of which H1047R-ATP complex resulted in the instability of PIK3CA. Similarly, for TP53 mutant R282W, the zinc-free state (apo) and zinc-bounded (holo) complexes were investigated for conformational change between apo and holo complexes, of which the holo complex mutant R282W was unstable. To validate the conformational change of PIK3CA and TP53, 80% mutation of H1047R in the kinase domain of p110α expressed ubiquitously in PIK3CA protein that alters PI3K pathway, while R282W mutation in DNA binding helix (H2) region of P53 protein inhibits the transcription factor in P53 pathway causing MBC. According to our findings, the extrinsic (hypoxia, oxidative stress, and acidosis); intrinsic factors (MYC amplification) in PIK3CA and TP53 mutations will provide potential insights for developing novel therapeutic methods for MBC therapy.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Fosfatidilinositol 3-Quinases , Proteína Supressora de Tumor p53 , Feminino , Humanos , Trifosfato de Adenosina , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Simulação de Acoplamento Molecular , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteína Supressora de Tumor p53/genética
8.
Ann Oncol ; 34(5): 486-495, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849097

RESUMO

BACKGROUND: Early detection of cancer offers the opportunity to identify candidates when curative treatments are achievable. The THUNDER study (THe UNintrusive Detection of EaRly-stage cancers, NCT04820868) aimed to evaluate the performance of enhanced linear-splinter amplification sequencing, a previously described cell-free DNA (cfDNA) methylation-based technology, in the early detection and localization of six types of cancers in the colorectum, esophagus, liver, lung, ovary, and pancreas. PATIENTS AND METHODS: A customized panel of 161 984 CpG sites was constructed and validated by public and in-house (cancer: n = 249; non-cancer: n = 288) methylome data, respectively. The cfDNA samples from 1693 participants (cancer: n = 735; non-cancer: n = 958) were retrospectively collected to train and validate two multi-cancer detection blood test (MCDBT-1/2) models for different clinical scenarios. The models were validated on a prospective and independent cohort of age-matched 1010 participants (cancer: n = 505; non-cancer: n = 505). Simulation using the cancer incidence in China was applied to infer stage shift and survival benefits to demonstrate the potential utility of the models in the real world. RESULTS: MCDBT-1 yielded a sensitivity of 69.1% (64.8%-73.3%), a specificity of 98.9% (97.6%-99.7%), and tissue origin accuracy of 83.2% (78.7%-87.1%) in the independent validation set. For early-stage (I-III) patients, the sensitivity of MCDBT-1 was 59.8% (54.4%-65.0%). In the real-world simulation, MCDBT-1 achieved a sensitivity of 70.6% in detecting the six cancers, thus decreasing late-stage incidence by 38.7%-46.4%, and increasing 5-year survival rate by 33.1%-40.4%, respectively. In parallel, MCDBT-2 was generated at a slightly low specificity of 95.1% (92.8%-96.9%) but a higher sensitivity of 75.1% (71.9%-79.8%) than MCDBT-1 for populations at relatively high risk of cancers, and also had ideal performance. CONCLUSION: In this large-scale clinical validation study, MCDBT-1/2 models showed high sensitivity, specificity, and accuracy of predicted origin in detecting six types of cancers.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Feminino , Humanos , Metilação de DNA , Estudos Prospectivos , Estudos Retrospectivos , Ácidos Nucleicos Livres/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer
9.
Mol Biol Rep ; 50(12): 10025-10036, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904010

RESUMO

BACKGROUND: MicroRNA and cell-free DNA have shown significant correlations with several autoimmune disorders including systemic lupus erythematosus (SLE). SLE has been associated with challenges in determining its activity, so that the need for biomarkers contributing to assessing its activity is emerging. The current study investigated miRNA-21, miRNA-146a and plasma cf-DNA in determination of SLE activity, in addition their association with clinical data including complement factor 3 (C3), complement factor(C4), anti-dsDNA, and other disease activity indices. METHODS AND RESULTS: Eighty subjects divided into; twenty active patients (with SLE-DAI2K score of 16-18) twenty inactive patients (with SLE-DAI2K score of 1-3), and forty healthy control participants) were included in this study. Serum miR-21, miR-146a, and plasma cf-DNA were quantified by real time PCR and their correlation with clinical data was statistically analyzed. The results demonstrated that active cases have significant upregulation of serum miRNA-21 and plasma cf-DNA. Moreover, miR-21 showed a negative, significant pertaining to C3, C4 and was positively related to Systemic Lupus Erythematosus Disease Activity Index 2 K score (SLE-DAI Index2K score) and Systemic-Lupus-Erythematosus-Disease Activity-Index 2 K activity (SLE-DAI 2 K activity). Also, Active group miRNA-146a was negatively, significantly correlated with C3, as well as a positive significant relationship with SLE-DAI2K score and SLEDAI 2 K activity, in addition to anti DNA Autoantibodies. Furthermore, miR-21 and cf-DNA demonstrated a differential value through Receiver Operating Characteristic (ROC) curve's study. CONCLUSIONS: the present study illustrated miR-21, miR-146a, and cf-DNA relationship with SLE clinical data. In addition to their potential value in SLE diagnosis, and activity determination.


Assuntos
Ácidos Nucleicos Livres , Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos , Biomarcadores , Complemento C3/genética , Complemento C3/análise , Complemento C4/análise , DNA , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética
10.
BMC Pulm Med ; 23(1): 348, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710221

RESUMO

BACKGROUND: Some research found that elevated plasma cell-free DNA (cfDNA) concentrations and poor prognosis are associated in non-small cell lung cancer (NSCLC). However, more studies need to be carried out to verify this conclusion. Therefore, this study investigated the relationship between cfDNA concentration and treatment outcomes including prognosis in patients with advanced NSCLC. METHODS: We retrospectively collected medical records and cfDNA data from 160 patients with advanced NSCLC. Progression-free survival (PFS) were calculated using the Kaplan-Meier method and were compared between groups using the log rank test. Cox regression analysis was used for estimating the independent predictors of PFS. And we used logistic regression to evaluate the relationship between baseline biomarkers and efficacy. In our study, BT1 cfDNA, BT2 cfDNA, and BT3 cfDNA were defined as cfDNA concentration before the first treatment (baseline cfDNA concentration), cfDNA concentration before the second treatment, and cfDNA concentration before the third treatment, respectively. RESULTS: Patients with low cfDNA (BT1 cfDNA < 15 (ng/mL)) were reported a significantly prolonged median progression-free survival (mPFS) compared with patients with patients with high cfDNA (BT1 cfDNA ≥ 15(ng/mL)) (mPFS: 14.6 vs. 8.3 months, P = 0.002), as well as patients with neutrophil/lymphocyte ratio (NLR)<2.98 (mPFS: 13.1 vs. 7.9 months, P = 0.023). In addition, Cox proportional hazards regression analysis identified independent indicators associated with PFS including BT1 cfDNA ≥ 15 (ng/mL), NLR ≥ 2.98 and extrapulmonary metastasis. The best cut-off value for BT3 cfDNA for predicting disease progression is 41.46 (ng/mL) (Area Under the Curve (AUC): 0.652, 95%CI: 0.516-0.788), achieving 90.7% sensitivity and 37.5% specificity for the prediction of disease progression. BT3 cfDNA (OR = 6.08, 95% CI: 1.94-19.57, P = 0.002) was an independent factor for disease progression in patients with advanced NSCLC. CONCLUSIONS: BT1 cfDNA may be a biomarker to assess the prognosis of advanced NSCLC. Patients with advanced NSCLC with lower cfDNA and NLR before treatment had a better prognosis. Increased BT3 cfDNA concentration was an independent factor of disease progression in advanced NSCLC patients. These findings may assist in identifying high-risk patients and guiding treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , Neoplasias Pulmonares/genética , Prognóstico , Resultado do Tratamento , Progressão da Doença
11.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108122

RESUMO

Non-small cell cancer (NSCLC) has been identified with a great variation of mutations that can be surveyed during disease progression. The aim of the study was to identify and monitor lung cancer-specific mutations incidence in cell-free DNA as well as overall plasma cell-free DNA load by means of targeted next-generation sequencing. Sequencing libraries were prepared from cell-free DNA (cfDNA) isolated from 72 plasma samples of 41 patients using the Oncomine Lung cfDNA panel covering hot spot regions of 11 genes. Sequencing was performed with the Ion Torrent™ Ion S5™ system. Four genes were detected with highest mutation incidence: KRAS (43.9% of all cases), followed by ALK (36.6%), TP53 (31.7%), and PIK3CA (29.3%). Seven patients had co-occurring KRAS + TP53 (6/41, 14.6%) or KRAS + PIK3CA (7/41, 17.1%) mutations. Moreover, the mutational status of TP53 as well an overall cell-free DNA load were confirmed to be predictors of poor progression-free survival (HR = 2.5 [0.8-7.7]; p = 0.029 and HR = 2.3 [0.9-5.5]; p = 0.029, respectively) in NSCLC patients. In addition, TP53 mutation status significantly predicts shorter overall survival (HR = 3.4 [1.2-9.7]; p < 0.001). We demonstrated that TP53 mutation incidence as well as a cell-free DNA load can be used as biomarkers for NSCLC monitoring and can help to detect the disease progression prior to radiological confirmation of the status.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Ácidos Nucleicos Livres/genética , Progressão da Doença , Classe I de Fosfatidilinositol 3-Quinases/genética , Biomarcadores Tumorais/genética
12.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685923

RESUMO

Molecular profiling may enable earlier detection of pancreatic cancer (PC) in high-risk individuals undergoing surveillance and allow for personalization of treatment. We hypothesized that the detection rate of DNA mutations is higher in pancreatic juice (PJ) than in plasma due to its closer contact with the pancreatic ductal system, from which pancreatic cancer cells originate, and higher overall cell-free DNA (cfDNA) concentrations. In this study, we included patients with pathology-proven PC or intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia (HGD) from two prospective clinical trials (KRASPanc and PACYFIC) for whom both PJ and plasma were available. We performed next-generation sequencing on PJ, plasma, and tissue samples and described the presence (and concordance) of mutations in these biomaterials. This study included 26 patients (25 PC and 1 IPMN with HGD), of which 7 were women (27%), with a median age of 71 years (IQR 12) and a median BMI of 23 kg/m2 (IQR 4). Ten patients with PC (40%) were (borderline) resectable at baseline. Tissue was available from six patients (resection n = 5, biopsy n = 1). A median volume of 2.9 mL plasma (IQR 1.0 mL) and 0.7 mL PJ (IQR 0.1 mL, p < 0.001) was used for DNA isolation. PJ had a higher median cfDNA concentration (2.6 ng/µL (IQR 4.2)) than plasma (0.29 ng/µL (IQR 0.40)). A total of 41 unique somatic mutations were detected: 24 mutations in plasma (2 KRAS, 15 TP53, 2 SMAD4, 3 CDKN2A 1 CTNNB1, and 1 PIK3CA), 19 in PJ (3 KRAS, 15 TP53, and 1 SMAD4), and 8 in tissue (2 KRAS, 2 CDKN2A, and 4 TP53). The mutation detection rate (and the concordance with tissue) did not differ between plasma and PJ. In conclusion, while the concentration of cfDNA was indeed higher in PJ than in plasma, the mutation detection rate was not different. A few cancer-associated genetic variants were detected in both biomaterials. Further research is needed to increase the detection rate and assess the performance and suitability of plasma and PJ for PC (early) detection.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Feminino , Criança , Masculino , Suco Pancreático , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Materiais Biocompatíveis , Ácidos Nucleicos Livres/genética , Neoplasias Pancreáticas
13.
Ann Oncol ; 33(5): 500-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306155

RESUMO

BACKGROUND: Identification of residual disease in patients with localized non-small cell lung cancer (NSCLC) following treatment with curative intent holds promise to identify patients at risk of relapse. New methods can detect circulating tumour DNA (ctDNA) in plasma to fractional concentrations as low as a few parts per million, and clinical evidence is required to inform their use. PATIENTS AND METHODS: We analyzed 363 serial plasma samples from 88 patients with early-stage NSCLC (48.9%/28.4%/22.7% at stage I/II/III), predominantly adenocarcinomas (62.5%), treated with curative intent by surgery (n = 61), surgery and adjuvant chemotherapy/radiotherapy (n = 8), or chemoradiotherapy (n = 19). Tumour exome sequencing identified somatic mutations and plasma was analyzed using patient-specific RaDaR™ assays with up to 48 amplicons targeting tumour-specific variants unique to each patient. RESULTS: ctDNA was detected before treatment in 24%, 77% and 87% of patients with stage I, II and III disease, respectively, and in 26% of all longitudinal samples. The median tumour fraction detected was 0.042%, with 63% of samples <0.1% and 36% of samples <0.01%. ctDNA detection had clinical specificity >98.5% and preceded clinical detection of recurrence of the primary tumour by a median of 212.5 days. ctDNA was detected after treatment in 18/28 (64.3%) of patients who had clinical recurrence of their primary tumour. Detection within the landmark timepoint 2 weeks to 4 months after treatment end occurred in 17% of patients, and was associated with shorter recurrence-free survival [hazard ratio (HR): 14.8, P <0.00001] and overall survival (HR: 5.48, P <0.0003). ctDNA was detected 1-3 days after surgery in 25% of patients yet was not associated with disease recurrence. Detection before treatment was associated with shorter overall survival and recurrence-free survival (HR: 2.97 and 3.14, P values 0.01 and 0.003, respectively). CONCLUSIONS: ctDNA detection after initial treatment of patients with early-stage NSCLC using sensitive patient-specific assays has potential to identify patients who may benefit from further therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , DNA Tumoral Circulante/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
14.
Am J Obstet Gynecol ; 227(1): 79.e1-79.e11, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35033576

RESUMO

BACKGROUND: Historically, prenatal screening has focused primarily on the detection of fetal aneuploidies. Cell-free DNA now enables noninvasive screening for subchromosomal copy number variants, including 22q11.2 deletion syndrome (or DiGeorge syndrome), which is the most common microdeletion and a leading cause of congenital heart defects and neurodevelopmental delay. Although smaller studies have demonstrated the feasibility of screening for 22q11.2 deletion syndrome, large cohort studies with confirmatory postnatal testing to assess test performance have not been reported. OBJECTIVE: This study aimed to assess the performance of single-nucleotide polymorphism-based, prenatal cell-free DNA screening for detection of 22q11.2 deletion syndrome. STUDY DESIGN: Patients who underwent single-nucleotide polymorphism-based prenatal cell-free DNA screening for 22q11.2 deletion syndrome were prospectively enrolled at 21 centers in 6 countries. Prenatal or newborn DNA samples were requested in all cases for genetic confirmation using chromosomal microarrays. The primary outcome was sensitivity, specificity, positive predictive value, and negative predictive value of cell-free DNA screening for the detection of all deletions, including the classical deletion and nested deletions that are ≥500 kb, in the 22q11.2 low-copy repeat A-D region. Secondary outcomes included the prevalence of 22q11.2 deletion syndrome and performance of an updated cell-free DNA algorithm that was evaluated with blinding to the pregnancy outcome. RESULTS: Of the 20,887 women enrolled, a genetic outcome was available for 18,289 (87.6%). A total of 12 22q11.2 deletion syndrome cases were confirmed in the cohort, including 5 (41.7%) nested deletions, yielding a prevalence of 1 in 1524. In the total cohort, cell-free DNA screening identified 17,976 (98.3%) cases as low risk for 22q11.2 deletion syndrome and 38 (0.2%) cases as high risk; 275 (1.5%) cases were nonreportable. Overall, 9 of 12 cases of 22q11.2 were detected, yielding a sensitivity of 75.0% (95% confidence interval, 42.8-94.5); specificity of 99.84% (95% confidence interval, 99.77-99.89); positive predictive value of 23.7% (95% confidence interval, 11.44-40.24), and negative predictive value of 99.98% (95% confidence interval, 99.95-100). None of the cases with a nonreportable result was diagnosed with 22q11.2 deletion syndrome. The updated algorithm detected 10 of 12 cases (83.3%; 95% confidence interval, 51.6-97.9) with a lower false positive rate (0.05% vs 0.16%; P<.001) and a positive predictive value of 52.6% (10/19; 95% confidence interval, 28.9-75.6). CONCLUSION: Noninvasive cell-free DNA prenatal screening for 22q11.2 deletion syndrome can detect most affected cases, including smaller nested deletions, with a low false positive rate.


Assuntos
Ácidos Nucleicos Livres , Síndrome de DiGeorge , Feminino , Humanos , Recém-Nascido , Gravidez , Aneuploidia , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Diagnóstico Pré-Natal , Polimorfismo de Nucleotídeo Único
15.
Mol Cell Probes ; 66: 101871, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283501

RESUMO

Ovarian cancer is the deadliest gynecological cancer. 70% of the cases are diagnosed at late stages with already developed metastases due to the absence of easily noticeable symptoms. Early-stage ovarian cancer has a good prognosis with a 5-year survival rate reaching 95%, hence the identification of effective biomarkers for early diagnosis is important. Advances in liquid biopsy-based methods can have a significant impact not just on the development of an efficient screening strategy, but also in clinical decision-making with additional molecular profiling and genetic alterations linked to therapy resistance. Despite the well-known advantages of liquid biopsy, there are still challenges that need to be addressed before its routine use in clinical practice. Various liquid biopsy-based biomarkers have been investigated in ovarian cancer; however, in this review, we are concentrating on the current use of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in disease management, focusing on their emerging importance in clinical practice. We also discuss the technical aspects of these workflows. The analysis of cfDNA is often chosen for the detection of mutations, copy number aberrations, and DNA methylation changes, whereas CTC analysis provides a unique opportunity to study whole cells, thus allowing DNA, RNA, and protein-based molecular profiling as well as in vivo studies. Combined solutions which merge the strengths of cfDNA and CTC approaches should be developed to maximize the potential of liquid biopsy technology.


Assuntos
Ácidos Nucleicos Livres , Células Neoplásicas Circulantes , Neoplasias Ovarianas , Humanos , Feminino , Células Neoplásicas Circulantes/patologia , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
16.
Nano Lett ; 21(1): 693-699, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33346665

RESUMO

Cell-free DNA (cfDNA) has attracted significant attention due to its high potential to diagnose diseases, such as cancer. Still, its detection by amplification method has limitations because of false-positive signals and difficulty in designing target-specific primers. CRISPR-Cas-based fluorescent biosensors have been developed but also need the amplification step for the detection. In this study, for the first time CRISPR-Cas12a based nucleic acid amplification-free fluorescent biosensor was developed to detect cfDNA by a metal-enhanced fluorescence (MEF) using DNA-functionalized Au nanoparticle (AuNP). Upon activating the CRISPR-Cas12a complex by the target cfDNA and subsequent single-strand DNA (ssDNA) degradation between AuNP and fluorophore, MEF occurred with color changes from purple to red-purple. Using this system, breast cancer gene-1 (BRCA-1) can be detected with very high sensitivity in 30 min. This rapid and highly selective sensor can be applied to measure other nucleic acid biomarkers such as viral DNA in field-deployable and point-of-care testing (POCT) platform.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colorimetria , DNA/genética , Ouro
17.
Crit Rev Clin Lab Sci ; 58(1): 60-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805148

RESUMO

Although prostate cancer (PCa) is one of the most common tumors in European males, the only minimally invasive diagnostic tool in PCa setup is the determination of PSA in serum. Cell-free DNA (cfDNA) has been demonstrated to be helpful for PCa diagnosis but has not yet been integrated into the clinical setting. This review aims to provide a systematic update of cfDNA and its fragmentation patterns in PCa reported in literature published over the last twenty years. Due to the high variability of the scientific methods adopted and a lack of standardized median cfDNA levels, results fluctuate across different studies. These differences may be due to the cfDNA source, the quantification method, or the fragmentation pattern. Blood plasma is the most frequently analyzed biological fluid, but seminal plasma has been reported to contain higher cfDNA concentration due to its vicinity to the tumor origin. CfDNA has been shown to be composed of single-stranded (ssDNA) and double-stranded DNA (dsDNA), so the total cfDNA concentration should be preferred as it corresponds best to the tumor mass. Fluorometry and capillary electrophoresis (CE) may be quick and cost-effective tools for cfDNA assessment in a clinical setting. The greatest future challenge is the elaboration of common guidelines and standardized procedures for diagnostic laboratories performing cfDNA analysis. A multiparametric approach combining the analysis of total cfDNA (both ssDNA and dsDNA), cfDNA fragment length, and specific genetic mutations (ctDNA assessment) is required for optimal future applications of liquid biopsy.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias da Próstata , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Humanos , Biópsia Líquida , Masculino , Mutação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
18.
Ann Oncol ; 32(4): 466-477, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548389

RESUMO

Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.


Assuntos
DNA Tumoral Circulante , Exossomos , Células Neoplásicas Circulantes , Biomarcadores Tumorais , Humanos , Biópsia Líquida , Masculino , Recidiva Local de Neoplasia
19.
Breast Cancer Res Treat ; 187(1): 69-80, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630196

RESUMO

PURPOSE: Current studies on circulating cell-free DNA (cfDNA) have been focusing on its potential as biomarkers in liquid biopsy by detecting its content or genetic and epigenetic changes for the evaluation of tumor burden and therapeutic efficacy. However, the regulatory mechanism of cfDNA release remains unclear. Stat3 has been documented as an oncogene for the development and metastasis of breast cancer cells. In this study, we investigated whether Stat3 affects the release of cfDNA into blood and its association with the number of circulating tumor cells (CTCs). METHODS: The cfDNA level in plasma of patients with breast cancer and healthy volunteers were determined by quantitative real-time PCR. Three mouse breast cancer models with different Stat3 expression were generated and used to established three breast cancer orthotopic animal models to examine the effect of Stat3 on cfDNA release in vivo. Stat3 mediated Epithelial-mesenchymal phenotype transition of CTCs was determined by immunofluorescence assay and Western blot assay. RESULTS: The data showed that Stat3 increased circulating cfDNA, which is correlated with the increased volume of primary tumors and number of CTCs, accompanied with the dynamic EMT changes regulated by Snail induction. Furthermore, the high level of total circulating cfDNA and Stat3-cfDNA in patients with breast cancer were detected by quantitative real-time PCR using GAPDH and Stat3 primers. CONCLUSION: Our results suggested that Stat3 increases the circulating cfDNA and CTCs in breast cancer.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Células Neoplásicas Circulantes , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Biópsia Líquida , Camundongos , Fator de Transcrição STAT3/genética
20.
BMC Cancer ; 21(1): 49, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430810

RESUMO

BACKGROUND: Novel biomarkers and molecular monitoring tools hold potential to improve outcome for patients following resection of pancreatic ductal adenocarcinoma (PDAC). We hypothesized that the combined longitudinal analysis of mutated cell-free plasma KRAS (cfKRASmut) and CA 19-9 during adjuvant treatment and follow-up might more accurately predict disease course than hitherto available parameters. METHODS: Between 07/2015 and 10/2018, we collected 134 plasma samples from 25 patients after R0/R1-resection of PDAC during adjuvant chemotherapy and post-treatment surveillance at our institution. Highly sensitive discriminatory multi-target ddPCR assays were employed to screen plasma samples for cfKRASmut. cfKRASmut and CA 19-9 dynamics were correlated with recurrence-free survival (RFS) and overall survival (OS). Patients were followed-up until 01/2020. RESULTS: Out of 25 enrolled patients, 76% had undergone R0 resection and 48% of resected PDACs were pN0. 17/25 (68%) of patients underwent adjuvant chemotherapy. Median follow-up was 22.0 months, with 19 out of 25 (76%) patients relapsing during study period. Median RFS was 10.0 months, median OS was 22.0 months. Out of clinicopathologic variables, only postoperative CA 19-9 levels and administration of adjuvant chemotherapy correlated with survival endpoints. cfKRASmut. was detected in 12/25 (48%) of patients, and detection of high levels inversely correlated with survival endpoint. Integration of cfKRASmut and CA 19-9 levels outperformed either individual marker. cfKRASmut outperformed CA 19-9 as dynamic marker since increase during adjuvant chemotherapy and follow-up was highly predictive of early relapse and poor OS. CONCLUSIONS: Integrated analysis of cfKRASmut and CA 19-9 levels is a promising approach for molecular monitoring of patients following resection of PDAC. Larger prospective studies are needed to further develop this approach and dissect each marker's specific potential.


Assuntos
Biomarcadores Tumorais/sangue , Antígeno CA-19-9/metabolismo , Carcinoma Ductal Pancreático/mortalidade , DNA Tumoral Circulante/sangue , Mutação , Neoplasias Pancreáticas/mortalidade , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/sangue , Estudos Retrospectivos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa