Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 171(1): 34-57, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938122

RESUMO

Polycomb (PcG) and Trithorax (TrxG) group proteins are evolutionarily conserved chromatin-modifying factors originally identified as part of an epigenetic cellular memory system that maintains repressed or active gene expression states. Recently, they have been shown to globally control a plethora of cellular processes. This functional diversity is achieved by their ability to regulate chromatin at multiple levels, ranging from modifying local chromatin structure to orchestrating the three-dimensional organization of the genome. Understanding this system is a fascinating challenge of critical relevance for biology and medicine, since misexpression or mutation of multiple PcG components, as well as of TrxG members of the COMPASS family and of the SWI/SNF complex, is implicated in cancer and other diseases.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas do Grupo Polycomb/metabolismo , Animais , Proteínas Cromossômicas não Histona/história , Células-Tronco Embrionárias/metabolismo , Genoma , História do Século XX , História do Século XXI , Humanos , Neoplasias/metabolismo , Proteínas do Grupo Polycomb/história
2.
Cell ; 167(5): 1296-1309.e10, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839867

RESUMO

The ability of cells to count and remember their divisions could underlie many alterations that occur during development, aging, and disease. We tracked the cumulative divisional history of slow-cycling hematopoietic stem cells (HSCs) throughout adult life. This revealed a fraction of rarely dividing HSCs that contained all the long-term HSC (LT-HSC) activity within the aging HSC compartment. During adult life, this population asynchronously completes four traceable symmetric self-renewal divisions to expand its size before entering a state of dormancy. We show that the mechanism of expansion involves progressively lengthening periods between cell divisions, with long-term regenerative potential lost upon a fifth division. Our data also show that age-related phenotypic changes within the HSC compartment are divisional history dependent. These results suggest that HSCs accumulate discrete memory stages over their divisional history and provide evidence for the role of cellular memory in HSC aging.


Assuntos
Envelhecimento/patologia , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Transplante de Medula Óssea , Ciclo Celular , Divisão Celular , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína IIb da Membrana de Plaquetas/metabolismo
3.
Eur J Immunol ; 53(6): e2250022, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36330560

RESUMO

Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Pandemias , COVID-19/prevenção & controle , Vetores Genéticos/genética , Adenoviridae/genética
4.
Biol Reprod ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910516

RESUMO

In cattle, the endometrium during diestrus and early pregnancy displays cellular responses that are consequences of prior, transient stimuli. Goal was to establish a model to study cellular memory in the endometrium. The hypothesis is that stimuli given to endometrium in vivo are retained as a cellular memory that remains after bovine uterine epithelial cells (BUECs) are isolated, cultured, and further stimulated in vitro. Objectives were to measure BUEC proliferation/migration and responsiveness to recombinant bovine Interferon-tau (rbIFNT) in vitro: among cows that showed estrus (experiment 1 [Exp1]), cows that became or not pregnant to artificial insemination (Exp2), cows that received or not supplemental progesterone (P4; Exp3) and cows that received or not a COX-1/2 inhibitor (Exp4). Only cows that displayed estrus were included in studies. For all experiments endometrial cytology was collected 4 days after estrus, BUECs were cultured, propagated, and submitted to rbIFNT treatment and an in vitro scratch assay. In Exp1, different cows spontaneously grouped according to proliferative/migratory capacity and responsiveness to rbIFNT of their respective BUECs. In Exp2, BUECs from pregnant cows showed greater rbIFNT responsiveness and cellular proliferation. In Exp3, BUECs from cows supplemented with P4 presented inhibited proliferation and increased expression of RSAD2. In Exp4, Flunixin Meglumine modified rbIFNT responsiveness of BUECs in an IFN-signaling pathway-specific manner. In conclusion, physiological and pharmacological stimuli received by the endometrium in vivo were retained as cellular memory in BUECs, persisted in culture, and changed BUEC proliferation/migration and responsiveness to rbIFNT, which are characteristics associated with fertility in cattle.

5.
J Neurochem ; 165(3): 303-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547371

RESUMO

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Assuntos
Epigênese Genética , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Tubo Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo
6.
Semin Cell Dev Biol ; 97: 16-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991117

RESUMO

Wound healing, tissue regeneration, and organ regrowth are all regeneration phenomena observed in vertebrates after an injury. However, the ability to regenerate differs greatly among species. Mammals can undergo wound healing and tissue regeneration, but cannot regenerate an organ; for example, they cannot regrow an amputated limb. In contrast, amphibians and fish have much higher capabilities for organ-level regeneration. In addition to medical studies and those in conventional mammalian models such as mice, studies in amphibians and fish have revealed essential factors for and mechanisms of regeneration, including the regrowth of a limb, tail, or fin. However, the molecular nature of the cellular memory needed to precisely generate a new appendage from an amputation site is not fully understood. Recent reports have indicated that organ regeneration is closely related to epigenetic regulation. For example, the methylation status of genomic DNA is related to the expression of regeneration-related genes, and histone-modification enzymes are required to control the chromatin dynamics for regeneration. A proposed mechanism of cellular memory involving an inheritable system of epigenetic modification led us to hypothesize that epigenetic regulation forms the basis for cellular memory in organ regeneration. Here we summarize the current understanding of the role of epigenetic regulation in organ regeneration and discuss the relationship between organ regeneration and epigenetic memory.


Assuntos
Cromatina/metabolismo , Epigênese Genética/genética , Extremidades/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Vertebrados/metabolismo , Animais , Camundongos
7.
Genes Dev ; 28(5): 423-31, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24589774

RESUMO

Cells in multicellular organisms have distinct identities characterized by their profiles of expressed genes. Cell identities can be stable over a long time and through multiple cellular divisions but are also responsive to extracellular signals. Since the DNA sequence is identical in all cells, a "cellular memory" of expression profiles is achieved by what are defined as epigenetic mechanisms. Two major molecular principles--networks of transcription factors and maintenance of cis-chromatin modifications--have been implicated in maintaining cellular memory. Here we describe recent studies demonstrating that short noncoding RNAs can also provide molecular signals that define epigenetic states of cells. Small RNAs can act independently or cooperate with chromatin modifications to achieve long-lasting effects necessary for cellular memory and transgenerational inheritance.


Assuntos
Células/citologia , Epigênese Genética , Animais , Diferenciação Celular/genética , Células/metabolismo , Elementos de DNA Transponíveis/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232877

RESUMO

Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Animais , Humanos , Neovascularização Patológica
9.
Curr Genet ; 65(3): 721-727, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666394

RESUMO

When faced with environmental changes, microbes enter a lag phase during which cell growth is arrested, allowing cells to adapt to the new situation. The discovery of the lag phase started the field of gene regulation and led to the unraveling of underlying mechanisms. However, the factors determining the exact duration and dynamics of the lag phase remain largely elusive. Naively, one would expect that cells adapt as quickly as possible, so they can resume growth and compete with other organisms. However, recent studies show that the lag phase can last from several hours up to several days. Moreover, some cells within the same population take much longer than others, despite being genetically identical. In addition, the lag phase duration is also influenced by the past, with recent exposure to a given environment leading to a quicker adaptation when that environment returns. Genome-wide screens in Saccharomyces cerevisiae on carbon source shifts now suggest that the length of the lag phase, the heterogeneity in lag times of individual cells, and the history-dependent behavior are not determined by the time it takes to induce a few specific genes related to uptake and metabolism of a new carbon source. Instead, a major shift in general metabolism, and in particular a switch between fermentation and respiration, is the major bottleneck that determines lag duration. This suggests that there may be a fitness trade-off between complete adaptation of a cell's metabolism to a given environment, and a short lag phase when the environment changes.


Assuntos
Adaptação Fisiológica , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Dev Biol ; 406(2): 271-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282893

RESUMO

Many amphibians can regenerate limbs, even in adulthood. If a limb is amputated, the stump generates a blastema that makes a complete, new limb in a process similar to developmental morphogenesis. The blastema is thought to inherit its limb-patterning properties from cells in the stump, and it retains the information despite changes in morphology, gene expression, and differentiation states required by limb regeneration. We hypothesized that these cellular properties are maintained as epigenetic memory through histone modifications. To test this hypothesis, we analyzed genome-wide histone modifications in Xenopus limb bud regeneration. The trimethylation of histone H3 at lysine 4 (H3K4me3) is closely related to an open chromatin structure that allows transcription factors access to genes, whereas the trimethylation of histone H3 at lysine 27 (H3K27me3) is related to a closed chromatin state that blocks the access of transcription factors. We compared these two modification profiles by high-throughput sequencing of samples prepared from the intact limb bud and the regenerative blastema by chromatin immunoprecipitation. For many developmental genes, histone modifications at the transcription start site were the same in the limb bud and the blastema, were stable during regeneration, and corresponded well to limb properties. These results support our hypothesis that histone modifications function as a heritable cellular memory to maintain limb cell properties, despite dynamic changes in gene expression during limb bud regeneration in Xenopus.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Código das Histonas/fisiologia , Botões de Extremidades/fisiologia , Regeneração/fisiologia , Xenopus/fisiologia , Adenosina/análogos & derivados , Animais , Animais Geneticamente Modificados , Sequência de Bases , Imunoprecipitação da Cromatina , Metilação de DNA/genética , Primers do DNA/genética , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Biochim Biophys Acta ; 1839(12): 1440-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24859459

RESUMO

Recent studies have discovered phenotypes induced by a transient treatment or mutation that persist for multiple generations without mutations in DNA. Both invertebrates and vertebrates exhibit such inheritance, and a range of environmental factors can act as a trigger. Now referred to as transgenerational epigenetic inheritance or TEI, this emerging field faces a big challenge-what molecular mechanisms account for inheritance of TEI phenotypes? This review describes examples of TEI and focuses on the possible role of histone methylation and small RNAs in mediating TEI.


Assuntos
Epigênese Genética/fisiologia , Interação Gene-Ambiente , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Padrões de Herança , Animais , Metilação de DNA , Aptidão Genética , Histona Metiltransferases , Humanos , Padrões de Herança/genética , Transdução de Sinais/genética
12.
Curr Opin Neurobiol ; 84: 102829, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128422

RESUMO

Throughout development, the neuronal epigenome is highly sensitive to external stimuli, yet capable of safeguarding cellular memory for a lifetime. In the adult brain, memories of fearful experiences are rapidly instantiated, yet can last for decades, but the mechanisms underlying such longevity remain unknown. Here, we showcase how fear memory formation and storage - traditionally thought to exclusively affect synapse-based events - elicit profound and enduring changes to the chromatin, proposing epigenetic regulation as a plausible molecular template for mnemonic processes. By comparing these to mechanisms occurring in development and differentiation, we notice that an epigenetic machinery similar to that preserving cellular memories might be employed by brain cells so as to form, store, and retrieve behavioral memories.


Assuntos
Epigênese Genética , Memória , Memória/fisiologia , Encéfalo/fisiologia , Medo/fisiologia , Cromatina
13.
Cureus ; 16(4): e59385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694651

RESUMO

The field of organ transplantation, particularly heart transplantation, has brought to light interesting phenomena challenging traditional understandings of memory, identity, and consciousness. Studies indicate that heart transplant recipients may exhibit preferences, emotions, and memories resembling those of the donors, suggesting a form of memory storage within the transplanted organ. Mechanisms proposed for this memory transfer include cellular memory, epigenetic modifications, and energetic interactions. Moreover, the heart's intricate neural network, often referred to as the "heart brain," communicates bidirectionally with the brain and other organs, supporting the concept of heart-brain connection and its role in memory and personality. Additionally, observations from hemispherectomy procedures highlight the brain's remarkable plasticity and functional preservation beyond expectations, further underscoring the complex interplay between the brain, body, and identity. However, ethical and philosophical questions regarding the implications of these findings, including the definition of death and the nature of personal identity, remain unresolved. Further interdisciplinary research is needed to unravel the intricacies of memory transfer, neuroplasticity, and organ integration, offering insights into both organ transplantation and broader aspects of neuroscience and human identity. Understanding these complexities holds promise for enhancing patient care in organ transplantation and deepens our understanding of fundamental aspects of human experience and existence.

14.
Sci Rep ; 14(1): 7709, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565882

RESUMO

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Adulto , Anticorpos Neutralizantes , Interleucina-10 , Anticorpos Antivirais , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Vacinação
15.
Prog Biophys Mol Biol ; 186: 33-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052327

RESUMO

Family Constellations are an emerging therapeutic approach for working with local and non-local consciousness. First developed by German psychoanalyst Bert Hellinger, and now practiced by thousands of licensed and un-licensed facilitators globally, Family Constellations are a transpersonal and systemically oriented therapeutic process. Their aim is to address a focus client's emotional, behavioral, relational, or somatic issues by uncovering and resolving transgenerational entanglements within their family system. The author expands on the proposal of symbiogenesis as a mediator of local and non-local consciousness to query whether applying the Observer Effect to inherited trauma may influence epigenetic marks. An expanded perspective on consciousness, life, death, and quantum fields may provide a more comprehensive framework to address therapeutic interventions for common emotional and behavioral disorders. Innovative features of Family Constellations are its phenomenological orientation, reference to family system entanglements, and potential for symptom relief through cellular mediation of ancestral memory. Family Constellations utilize techniques called representative perception and tuning-in to identify and release ancestral traumas. These are akin to remote viewing and mediumship. While the scientific basis for Family Constellations is speculative, the text references research on the quantum theory of consciousness, mediumship and remote viewing as potential supporting evidence. Four case studies are presented.


Assuntos
Estado de Consciência , Psicoterapia , Humanos , Relações Familiares , Psicoterapia/métodos
16.
bioRxiv ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39071414

RESUMO

Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.

17.
Mater Today Bio ; 26: 101097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827038

RESUMO

Cell properties generally change when the culture condition is changed. However, mesenchymal stem cells cultured on a hard material surface maintain their differentiation characteristics even after being cultured on a soft material surface. This phenomenon suggests the possibility of a cell culture material to memorize stem cell function even in changing cell culture conditions. However, there are no reports about cell memory function in three-dimensional (3D) culture. In this study, colon cancer cells were cultured with collagen microfibers (CMF) in 3D to evaluate their resistance to reactive oxygen species (ROS) in comparison with a monolayer (2D) culture condition and to understand the effect of 3D-culture on cell memory function. The ratio of ROS-negative cancer cells in 3D culture increased with increasing amounts of CMF and the highest amount of CMF was revealed to be 35-fold higher than that of the 2D condition. The ROS-negative cells ratio was maintained for 7 days after re-seeding in a 2D culture condition, suggesting a 3D-memory function of ROS resistance. The findings of this study will open up new opportunities for 3D culture to induce cell memory function.

18.
Vaccine ; 41(33): 4808-4822, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357073

RESUMO

Infections with SARS-CoV-2 variants and declining immunity after primary vaccination, encouraged the use of booster doses. Some countries changed their immunization programmes to boost with vaccines different from the ones in their original schedule, based on results from immunogenicity and effectiveness studies. This study reports immunological analysis of samples collected in a phase 4 randomized trial, where participants who had previously received two primary doses of ChAdOx1 nCov-19 (ChAd) or inactivated BBV152 vaccine were randomized to receive either ChAd or BBV152 booster and further categorized as: Group 1 (two primary doses of ChAd - ChAd booster), Group 2 (two primary doses of ChAd - BBV152 booster), Group 3 (two primary doses of BBV152 - ChAd booster), and Group 4 (two primary doses of BBV152 - BBV152 booster). SARS-CoV-2 specific cellular and humoral responses at day 0 (pre-boost samples 12-36 weeks after the second primary dose), and at day 28 post booster, were measured in a subset of participants (ChAd recipients, n = 37 and BBV152 recipients, n = 36). Additionally, on day180 post-booster humoral responses were assessed for the entire cohort (N = 378). Primary vaccination with 2 doses of BBV152 generated higher memory-B cells (median% 0.41 vs 0.35) and cytokine producing CD8-Tcells (median% 0.09 vs 0.04) while lower anti-spike IgG levels (medianAU/ml: 12,433 vs 27,074) as compared to ChAd. Irrespective of the primary vaccine received, ChAd boosted individuals generated higher memory-B cell frequencies and anti-spike IgG levels as compared to BBV152 booster. The percentage ACE-2 inhibition against Omicron and its sub-variants was higher in Group 3 (median > 60 %) as compared to other groups (median < 25 %). At day180 post booster the hierarchy of the antibody amounts was Group 1 âˆ¼ Group 2 âˆ¼ Group 3 > Group 4. Sustained humoral and robust cellular immune response to SARS-CoV-2 can be obtained with ChAd booster irrespective of the primary vaccination regimen. The trial is registered with ISRTCN (CTRI/2021/08/035648).


Assuntos
COVID-19 , Vacinas Virais , Humanos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Adenoviridae/genética , Índia , Vacinas de Produtos Inativados , Imunidade , Imunoglobulina G , Anticorpos Antivirais
19.
Vaccine ; 40(5): 798-810, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-34969545

RESUMO

The present investigation comprised two independent observational arms to evaluate the influence of pre-existing flavivirus humoral immunity and the age-impact on 17DD-YF vaccination immunity. Flavivirus (YFV; DENV; ZIKV) serology and YF-specific cellular immunity was evaluated in 288 children/9Mths-4Yrs and 288 adults/18-49Yrs residents of areas without YFV circulation. Data demonstrated that flavivirus seropositivity at baseline was higher in Adults as compared to Children (26%;87%;67% vs 6%;13%;15%, respectively). The heterologous flavivirus seropositivity (DENV; ZIKV) did not impact the YF-specific cellular immune response at baseline. However, higher levels of NCD4, EMCD8, IFN-MCD8, NCD19 and nCMCD19 were observed in subjects with pre-existing YFV seropositivity. Primary vaccination of YFV-seronegative volunteers led to higher levels of YF-neutralizing antibodies in Adults as compared to Younger Children (9Mths-2Yrs). Although similar seropositivity rates observed amongst Children and Adults at D30-45, lower rates were observed in Younger Children (9Mths-2Yrs) at D365 (94%;95%;100% vs 87%;96%;99%, respectively). A progressive decline in antibody levels were reported at D365, being more expressive in Children as compared to Adults. All age-subgroups exhibited at D30-45 increased levels of eEfCD4, EMCD4, IFN-MCD8 and nCMCD19 together with a decrease of eEfCD8 and CMCD8. While an increase of EMCD8 were observed in all subgroups at D30-45, a declined duration at D365 was reported only in Younger Children (9Mths-2Yrs). Biomarker signatures further support that only Younger Children (9Mths-2Yrs) presented a progressive decline of EMCD8 at D365. Together, these findings demonstrated that regardless the similarities observed in YF-neutralizing antibodies, the age impacts the duration of cellular immune response to primary 17DD-YF vaccination.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Infecção por Zika virus , Zika virus , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Imunidade Celular , Vacinação , Febre Amarela/prevenção & controle , Vírus da Febre Amarela
20.
Cell Rep ; 40(7): 111159, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977475

RESUMO

Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.


Assuntos
NF-kappa B , Transdução de Sinais , Simulação por Computador , Citocinas/metabolismo , Perfilação da Expressão Gênica , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa