Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Neurosci ; 134(9): 1019-1025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38525692

RESUMO

OBJECTIVE: This research aimed to ascertain the effects of acupuncture at myofascial trigger points (MTrPs) in combination with sling exercise therapy (SET) on the clinical recovery and cervical spine biomechanics in patients with cervical spondylotic radiculopathy (CRS). METHODS: Eighty patients with CSR were divided into Group A and Group B. Group A was treated with acupuncture at MTrPs, and Group B was treated with acupuncture at MTrPs combined with SET. The cervical spine function, pain level, cervical spine biomechanics and the occurrence of complications were compared between the two groups before and after treatment. RESULTS: After treatment, the Japanese Orthopaedic Association scores, Clinical Assessment Scale for Cervical Spondylosis scores, cervical forward flexion angle, posterior extension angle, left lateral flexion angle, right lateral flexion angle, left lateral rotation angle, and right lateral rotation angle of the Group B were raised, and the Neck Disability index, Visual Analogue Scale scores, and Neck Pain Questionnaire scores were reduced versus those of the Group A. The difference in complication rates between the two groups was not of statistical significance. CONCLUSION: Acupuncture at MTrPs combined with SET promotes functional recovery of the cervical spine, reduces pain, and improves cervical spine biomechanics in patients with CRS.


Assuntos
Terapia por Acupuntura , Vértebras Cervicais , Terapia por Exercício , Radiculopatia , Espondilose , Humanos , Masculino , Feminino , Radiculopatia/terapia , Radiculopatia/fisiopatologia , Radiculopatia/reabilitação , Pessoa de Meia-Idade , Espondilose/fisiopatologia , Espondilose/terapia , Espondilose/reabilitação , Espondilose/complicações , Terapia por Exercício/métodos , Adulto , Fenômenos Biomecânicos/fisiologia , Terapia Combinada , Pontos-Gatilho/fisiopatologia , Idoso , Resultado do Tratamento , Cervicalgia/terapia , Cervicalgia/reabilitação , Cervicalgia/fisiopatologia
2.
BMC Musculoskelet Disord ; 23(1): 227, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260131

RESUMO

BACKGROUND: Cervical disc prostheses are used to preserve motion after discectomy, but they should also provide a near-physiological qualitative motion pattern. Nevertheless, they come in many completely different biomechanical concepts. This caused us to perform an in-vivo MR-based biomechanical study to further investigate cervical spine motion with the aim to gain new information for improving the design of future cervical arthroplasty devices. METHODS: Fifteen healthy volunteers underwent MRI-investigation (in order to avoid radiation exposure) of their cervical spines from C3 to C7; for each segment centers of rotation (COR) for flexion / extension were determined from 5 different positions, and CORs for lateral bending from 3 different positions. The motion path of the COR is then described and illustrated in relation to the respective COR for maximum flexion / extension or lateral bending, respectively, and the findings are translated into implications for a better biomechanical prosthesis-design. RESULTS: The COR for flexion / extension does not remain constant during motion. The CORs for the respective motion intervals were always found at different positions than the COR for maximum flexion /extension showing that the COR moves both along the x- and the y-axis throughout flexion / extension. For lateral bending a completely independent COR was found above disc-level. CONCLUSION: Flexion / extension is not a simple circular motion. Disc prostheses need a variable COR for flexion / extension below disc level with the capability to move both along the x- and the y-axis during motion, plus a second completely independent COR for lateral bending above disc level to closely replicate in-vivo motion. These findings are important for improving the biomechanical design of such devices in the future.


Assuntos
Vértebras Cervicais , Disco Intervertebral , Fenômenos Biomecânicos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/fisiologia , Vértebras Cervicais/cirurgia , Humanos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/fisiologia , Disco Intervertebral/cirurgia , Imageamento por Ressonância Magnética , Desenho de Prótese , Amplitude de Movimento Articular/fisiologia , Rotação
3.
Front Bioeng Biotechnol ; 11: 1217274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650042

RESUMO

Introduction: Anterior cervical discectomy and fusion (ACDF) has been considered as the gold standard surgical treatment for cervical degenerative pathologies. Some surgeons tend to use larger-sized interbody cages during ACDF to restore the index intervertebral disc height, hence, this study evaluated the effect of larger-sized interbody cages on the cervical spine with ACDF under both static and cyclic loading. Method: Twenty pre-operative personalized poro-hyperelastic finite element (FE) models were developed. ACDF post-operative models were then constructed and four clinical scenarios (i.e., 1) No-distraction; 2) 1 mm distraction; 3) 2 mm distraction; and 4) 3 mm distraction) were predicted for each patient. The biomechanical responses at adjacent spinal levels were studied subject to static and cyclic loading. Non-parametric Friedman statistical comparative tests were performed and the p values less than 0.05 were reflected as significant. Results: The calculated intersegmental range of motion (ROM) and intradiscal pressure (IDP) from 20 pre-operative FE models were within the overall ranges compared to the available data from literature. Under static loading, greater ROM, IDP, facet joint force (FJF) values were detected post ACDF, as compared with pre-op. Over-distraction induced significantly higher IDP and FJF in both upper and lower adjacent levels in extension. Higher annulus fibrosus stress and strain values, and increased disc height and fluid loss at the adjacent levels were observed in ACDF group which significantly increased for over-distraction groups. Discussion: it was concluded that using larger-sized interbody cages (the height of ≥2 mm of the index disc height) can result in remarkable variations in biomechanical responses of adjacent levels, which may indicate as risk factor for adjacent segment disease. The results of this comprehensive FE investigation using personalized modeling technique highlight the importance of selecting the appropriate height of interbody cage in ACDF surgery.

4.
J Orthop Surg Res ; 15(1): 391, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907606

RESUMO

BACKGROUND: In cervical arthroplasty, qualitative motion analysis generally investigates the position of the center of rotation (COR) before and after surgery. But is the pre-op COR suitable as reference? We believe that only a comparison against healthy individuals can answer whether a physiological motion pattern has been achieved. The aim of our study was to examine how the COR for flexion/extension after insertion of 3 biomechanically completely different types of disc prostheses compares to healthy volunteers, and whether and how prosthesis design contributes to a more natural or maybe even worse motion pattern. METHODS: In 15 healthy volunteers, MRI in flexion and in extension was taken, and the coordinates for the CORs (COR-HV) from C3 to C7 were determined. Then pre- and post-op flexion/extension x-rays from 30 patients with a one-level disc prosthesis underwent analysis for determination of COR from C3 to C7; 10 patients who received a Bryan, a Prestige STLP, or a Discover prosthesis were chosen, respectively. Change of post-op COR position was investigated in relation to the COR-HV. RESULTS: The pre-operative COR is not congruent with the COR found in healthy subjects and therefore cannot be used as reference for investigation whether a disc prosthesis resembles natural motion. However, the comparison with healthy individuals shows that prosthesis insertion can change the coordinates of the COR to any direction in all levels from C3/4 to C6/7 regardless of the operated segment. Prostheses with flexible biomechanical properties can contribute to shift the COR toward normal, but devices with unphysiological biomechanical design, like fixed ball socket designs, for instance, can make the motion pattern even worse. CONCLUSIONS: Even if the small cohorts in our study do not allow strong conclusions, it seems that in cervical arthroplasty, the biomechanical concept of the prosthesis has a significant impact whether a near-physiological motion pattern can be achieved or not. As it is a rumor but not scientifically proven that prosthesis design has no influence on clinical outcome, surgeons should only choose devices with flexible biomechanical properties for disc replacement.


Assuntos
Artroplastia/métodos , Vértebras Cervicais/fisiologia , Disco Intervertebral/fisiologia , Maleabilidade , Próteses e Implantes , Desenho de Prótese , Amplitude de Movimento Articular , Adulto , Fenômenos Biomecânicos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Feminino , Humanos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rotação
5.
J Electromyogr Kinesiol ; 43: 127-139, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273920

RESUMO

The importance of surface-EMG placement for development and interpretation of EMG-assisted biomechanical models is well established. Since MR has become a reliable noninvasive cervical spine musculoskeletal diagnostic tool, this investigation attempted to illustrate the anatomical relationships of individual cervical spine muscles with their paired surface-EMG electrodes. The secondary purpose of this investigation was to provide an MR cross-sectional pictorial and descriptive guideline of the cervical spine musculature. MR scans were performed on a healthy adult male subject from skull to manubrium of the sternum. Prior to scanning, MR safe markers were placed over neck muscles following surface EMG placement recommendations. Twenty-three neck muscles were traced manually in each of 267 scan slices. 3-D models of the neck musculoskeletal structure were constructed to aid with understanding the complex anatomy of the region as well as to identify correct EMG electrode locations and to identify muscles' curved lines-of-action. 3D models of the MR-safe markers were constructed relative to the target muscles. Based on the findings of this study, muscle palpation and bony landmarks can be used to effectively identify appropriate surface EMG electrode locations to record upper trapezius, middle trapezius, semispinalis capitis, splenius capitis, levator scapulae, scalenus, sternocleidomastoid and hyoid muscles activities.


Assuntos
Vértebras Cervicais/fisiologia , Eletromiografia/normas , Espectroscopia de Ressonância Magnética/normas , Músculos do Pescoço/fisiologia , Guias de Prática Clínica como Assunto/normas , Adulto , Estudos Transversais , Eletromiografia/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Músculos Paraespinais/fisiologia , Reprodutibilidade dos Testes
6.
Spine J ; 16(4): 523-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26282105

RESUMO

BACKGROUND CONTEXT: Anterior cervical discectomy and fusion with plating (ACDFP) is commonly used for the treatment of distractive-flexion cervical spine injuries. Despite the prevalence of ACDFP, there is little biomechanical evidence for graft height selection in the unstable trauma scenario. PURPOSE: This study aimed to investigate whether changes in graft height affect the kinematics of instrumented ACDFP C5-C6 motion segments in the context of varying degrees of simulated facet injuries. STUDY DESIGN: In vitro cadaveric biomechanical study was used as study design. METHODS: Seven C5-C6 motion segments were mounted in a custom spine simulator and taken through flexibility testing in axial rotation, lateral flexion, and flexion-extension. Specimens were first tested intact, followed by a standardized injury model (SIM) for a unilateral facet perch at C5-C6. The stability of the ACDFP approach was then examined with three graft heights (computed tomography-measured disc space height, disc space height undersized by 2.5 mm, and disc space height oversized by 2.5 mm) within three increasing unstable injuries (SIM, an added unilateral facet fracture, and a simulated bilateral facet dislocation injury). RESULTS: In all motions, regardless of graft size, ACDFP reduced range of motion (ROM) from the SIM state. For flexion-extension, the oversized graft had a larger decrease in ROM compared with the other graft sizes (p<.05). Between graft sizes and injury states, there were a number of interactions in axial rotation and lateral flexion, where specifically in the most severe injury, the undersized graft had a larger decrease in ROM than the other two sizes (p<.05). CONCLUSIONS: This study found that graft size did affect the kinematic stability of ACDFP in a series of distractive-flexion injuries; the undersized graft resulted in both facet overlap and locking of the uncovertebral joints leading to decreased ROM in lateral bending and axial rotation, whereas an oversized graft provided larger ROM decreases in flexion-extension. As such, a graft that engages the uncovertebral joint may be more advantageous in providing a rigid environment for fusion with ACDFP.


Assuntos
Vértebras Cervicais/cirurgia , Discotomia/métodos , Instabilidade Articular/etiologia , Traumatismos da Coluna Vertebral/cirurgia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Placas Ósseas/efeitos adversos , Cadáver , Discotomia/efeitos adversos , Humanos , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Amplitude de Movimento Articular , Rotação
7.
Int J Spine Surg ; 6: 190-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25694890

RESUMO

BACKGROUND: The biomechanical behavior of total disc replacement (TDR) and anterior cervical discectomy and fusion (ACDF) incomplex multiplanar motion is incompletely understood. The purpose of this study was to determine whether ACDF or TDR significantly affects in vitro kinematics through a range of complex, multiplanar motions. METHODS: Seven human cervical spines from C4-7 were used for this study. Intact cervical motion segments with and without implanted TDR and ACDF were tested by use of unconstrained pure bending moment testing fixtures in 7 mechanical modes: axial rotation (AR); flexion/extension (FE); lateral bending (LB); combined FE and LB; combined FE and AR; combined LB and AR; and combined FE, LB, and AR. Statistical testing was performed to determine whether differences existed in range of motion (ROM) and stiffness among spinal segments and treatment groups for each mechanical test mode. RESULTS: ACDF specimens showed increased stiffness compared with the intact and TDR specimens (P < .001); stiffness was not found to be different between TDR and intact specimens. ACDF specimens showed decreased ROM in all directions compared with TDR and intact specimens at the treated level. For the coupled motion test, including AR, LB, and FE, the cranial adjacent level (C4/C5) for the intact specimens (2.7°) showed significantly less motion compared with both the TDR (6.1°, P = .009) and ACDF (6.8°, P = .002) treatment groups about the LB axis. Testing of the C4/C5 and C6/C7 levels in all other test modes yielded no significant differences in ROM comparisons, although a trend toward increasing ROM in adjacent levels in ACDF specimens compared with intact and TDR specimens was observed. CONCLUSIONS: This study compared multiplanar motion under load-displacement testing of subaxial cervical motion segments with and without implanted TDR and ACDF. We found a trend toward increased motion in adjacent levels in ACDF specimens compared with TDR specimens. Biomechanical multiplanar motion testing will be useful in the ongoing development and evaluation of spinal motion-preserving implants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa