Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.918
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38270401

RESUMO

A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.


Assuntos
Crassostrea , Mytilus , Animais , Mytilus/genética , Filogenia , Crassostrea/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 121(14): e2401982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536753

RESUMO

Photochemical valence bond isomerization of a crystalline Dewar benzene (DB) diacid monoanion salt with an acetophenone-linked piperazinium cation that serves as an intramolecular triplet energy sensitizer (DB-AcPh-Pz) exhibits a quantum chain reaction with as many as 450 product molecules per photon absorbed (Φ ≈ 450). By contrast, isomorphous crystals of the DB diacid monosalt of an ethylbenzene-linked piperazinium (DB-EtPh-Pz) lacking a triplet sensitizer showed a less impressive quantum yield of ca. Φ ≈ 22. To establish the critical importance of a triplet excited state carrier in the adiabatic photochemical reaction we prepared mixed crystals with DB-AcPh-Pz as a dilute triplet sensitizer guest in crystals of DB-EtPh-Pz. As expected from their high structural similarities, solid solutions were easily formed with the triplet sensitizer salt in the range of 0.1 to 10%. Experiments carried out under conditions where light is absorbed by the triplet sensitizer-linked DB-AcPh-Pz can be used to initiate a triplet state adiabatic reaction from 3DB-AcPh-Pz to 3HB*-AcPh-Pz, which can serve as a chain carrier and transfer energy to an unreacted DB-EtPh-Pz where exciton delocalization in the crystalline solid solution can help carry out an efficient energy transfer and enable a quantum chain employing the photoproduct as a triplet chain carrier. Excitation of mixed crystals with as little as 0.1% triplet sensitizer resulted in an extraordinarily high quantum yield Φ ≈ 517.

3.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459738

RESUMO

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Técnicas de Genotipagem/métodos , Primers do DNA/genética , Locos de Características Quantitativas/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Glycine max/genética , Biblioteca Gênica , Polimorfismo Genético , Produtos Agrícolas/genética , Genótipo
4.
J Pathol ; 263(3): 288-299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747304

RESUMO

In the Drug Rediscovery Protocol (DRUP), patients with cancer are treated based on their tumor molecular profile with approved targeted and immunotherapies outside the labeled indication. Importantly, patients undergo a tumor biopsy for whole-genome sequencing (WGS) which allows for a WGS-based evaluation of routine diagnostics. Notably, we observed that not all biopsies of patients with dMMR/MSI-positive tumors as determined by routine diagnostics were classified as microsatellite-unstable by subsequent WGS. Therefore, we aimed to evaluate the discordance rate between routine dMMR/MSI diagnostics and WGS and to further characterize discordant cases. We assessed patients enrolled in DRUP with dMMR/MSI-positive tumors identified by routine diagnostics, who were treated with immune checkpoint blockade (ICB) and for whom WGS data were available. Patient and tumor characteristics, study treatment outcomes, and material from routine care were retrieved from the patient medical records and via Palga (the Dutch Pathology Registry), and were compared with WGS results. Initially, discordance between routine dMMR/MSI diagnostics and WGS was observed in 13 patients (13/121; 11%). The majority of these patients did not benefit from ICB (11/13; 85%). After further characterization, we found that in six patients (5%) discordance was caused by dMMR tumors that did not harbor an MSI molecular phenotype by WGS. In six patients (5%), discordance was false due to the presence of multiple primary tumors (n = 3, 2%) and misdiagnosis of dMMR status by immunohistochemistry (n = 3, 2%). In one patient (1%), the exact underlying cause of discordance could not be identified. Thus, in this group of patients limited to those initially diagnosed with dMMR/MSI tumors by current routine diagnostics, the true assay-based discordance rate between routine dMMR/MSI-positive diagnostics and WGS was 5%. To prevent inappropriate ICB treatment, clinicians and pathologists should be aware of the risk of multiple primary tumors and the limitations of different tests. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Reparo de Erro de Pareamento de DNA , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Sequenciamento Completo do Genoma , Adulto , Biomarcadores Tumorais/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Idoso de 80 Anos ou mais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia
5.
Genomics ; 116(4): 110875, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849018

RESUMO

Exploration of a stably expressed gene as a reference is critical for the accurate evaluation of miRNAs isolated from small extracellular vesicles (sEVs). In this study, we analyzed small RNA sequencing on plasma sEV miRNAs in the training dataset (n = 104) and found that miR-140-3p was the most stably expressed candidate reference for sEV miRNAs. We further demonstrated that miR-140-3p expressed most stably in the validation cohort (n = 46) when compared to two other reference miRNAs, miR-451a and miR-1228-3p, and the commonly-used miRNA reference U6. Finally, we compared the capability of miR-140-3p and U6 as the internal reference for sEV miRNA expression by evaluating key miRNAs expression in lung cancer patients and found that miR-140-3p was more suitable as a sEV miRNA reference gene. Taken together, our data indicated miR-140-3p as a stable internal reference miRNA of plasma sEVs to evaluate miRNA expression profiles in lung cancer patients.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Padrões de Referência , Reação em Cadeia da Polimerase em Tempo Real/normas , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética
6.
Nano Lett ; 24(23): 6939-6947, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814180

RESUMO

The risk of harmful microorganisms to ecosystems and human health has stimulated exploration of singlet oxygen (1O2)-based disinfection. It can be potentially generated via an electrocatalytic process, but is limited by the low production yield and unclear intermediate-mediated mechanism. Herein, we designed a two-site catalyst (Fe/Mo-N/C) for the selective 1O2 generation. The Mo sites enhance the generation of 1O2 precursors (H2O2), accompanied by the generation of intermediate •HO2/•O2-. The Fe site facilitates activation of H2O2 into •OH, which accelerates the •HO2/•O2- into 1O2. A possible mechanism for promoting 1O2 production through the ROS-mediated chain reaction is reported. The as-developed electrochemical disinfection system can kill 1 × 107 CFU mL-1 of E. coli within 8 min, leading to cell membrane damage and DNA degradation. It can be effectively applied for the disinfection of medical wastewater. This work provides a general strategy for promoting the production of 1O2 through electrocatalysis and for efficient electrochemical disinfection.


Assuntos
Desinfecção , Escherichia coli , Peróxido de Hidrogênio , Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Desinfecção/métodos , Catálise , Escherichia coli/metabolismo , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Técnicas Eletroquímicas , Molibdênio/química , Ferro/química , Águas Residuárias/química , Águas Residuárias/microbiologia
7.
Nano Lett ; 24(8): 2603-2610, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349971

RESUMO

Dynamic biological structures involve the continual turnover of molecules within supramolecular assemblies such as tubulin. Inspired by dynamic biology self-organizing systems, we build an artificial dynamic structure based on DNA nanotechnology through a nonequilibrium chemical system. Herein, a metastable domain (MD), essentially a stem-loop structure, was introduced into DNA hairpins within hybridization chain reaction (HCR), thereby imparting dynamic activity to the DNA polymers. Hairpins with MD thermodynamically assemble to a high-energy polymer in the presence of trigger strands. The polymer can relax back to the stable unassembled state once the invader is added and finally relax to the activated hairpin by an anti-invader. Reversible assembly/disassembly of the HCR is achieved through invader/anti-invader cycles. We accomplished kinetic modulation, reversible conformational switching, cascading regulation, and enzyme activity control through the MD-HCR. We believe that the design of the MD-HCR could inspire the development of autonomous biological functions within artificial systems.


Assuntos
DNA , Tubulina (Proteína) , Tubulina (Proteína)/genética , DNA/química , Hibridização de Ácido Nucleico , Nanotecnologia
8.
J Infect Dis ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427774

RESUMO

Adverse outcomes of viral respiratory tract infections (RTI) have been reported in recipients of allogeneic hematopoietic cell transplantation. Using a laboratory-developed multiparameter PCR in a consecutive series of 242 patients, we found the highest incidence of viral RTI in the pre-engraftment phase. The occurrence of multiple episodes of viral RTI or viral pneumonia was significantly associated with a higher hazard of non-relapse mortality in the first year after transplantation. We observed a 90-day mortality of 19.7% after viral RTI, which was significantly different between patient groups stratified according to the ISI score.

9.
J Biol Chem ; 299(6): 104751, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100287

RESUMO

As a typical biomarker, the expression of microRNA is closely related to the occurrence of cancer. However, in recent years, the detection methods have had some limitations in the research and application of microRNAs. In this paper, an autocatalytic platform was constructed through the combination of a nonlinear hybridization chain reaction and DNAzyme to achieve efficient detection of microRNA-21. Fluorescently labeled fuel probes can form branched nanostructures and new DNAzyme under the action of the target, and the newly formed DNAzyme can trigger a new round of reactions, resulting in enhanced fluorescence signals. This platform is a simple, efficient, fast, low-cost, and selective method for the detection of microRNA-21, which can detect microRNA-21 at concentrations as low as 0.004 nM and can distinguish sequence differences by single-base differences. In tissue samples from patients with liver cancer, the platform shows the same detection accuracy as real-time PCR but with better reproducibility. In addition, through the flexible design of the trigger chain, our method could be adapted to detect other nucleic acid biomarkers.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , DNA Catalítico/química , Reprodutibilidade dos Testes , Limite de Detecção , Hibridização de Ácido Nucleico , Biomarcadores , Técnicas Biossensoriais/métodos
10.
Clin Infect Dis ; 79(1): 161-168, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860786

RESUMO

BACKGROUND: This meta-analysis examines the comparative diagnostic performance of polymerase chain reaction (PCR) for the diagnosis of Pneumocystis pneumonia (PCP) on different respiratory tract samples, in both human immunodeficiency virus (HIV) and non-HIV populations. METHODS: A total of 55 articles met inclusion criteria, including 11 434 PCR assays on respiratory specimens from 7835 patients at risk of PCP. QUADAS-2 tool indicated low risk of bias across all studies. Using a bivariate and random-effects meta-regression analysis, the diagnostic performance of PCR against the European Organisation for Research and Treatment of Cancer-Mycoses Study Group definition of proven PCP was examined. RESULTS: Quantitative PCR (qPCR) on bronchoalveolar lavage fluid provided the highest pooled sensitivity of 98.7% (95% confidence interval [CI], 96.8%-99.5%), adequate specificity of 89.3% (95% CI, 84.4%-92.7%), negative likelihood ratio (LR-) of 0.014, and positive likelihood ratio (LR+) of 9.19. qPCR on induced sputum provided similarly high sensitivity of 99.0% (95% CI, 94.4%-99.3%) but a reduced specificity of 81.5% (95% CI, 72.1%-88.3%), LR- of 0.024, and LR+ of 5.30. qPCR on upper respiratory tract samples provided lower sensitivity of 89.2% (95% CI, 71.0%-96.5%), high specificity of 90.5% (95% CI, 80.9%-95.5%), LR- of 0.120, and LR+ of 9.34. There was no significant difference in sensitivity and specificity of PCR according to HIV status of patients. CONCLUSIONS: On deeper respiratory tract specimens, PCR negativity can be used to confidently exclude PCP, but PCR positivity will likely require clinical interpretation to distinguish between colonization and active infection, partially dependent on the strength of the PCR signal (indicative of fungal burden), the specimen type, and patient population tested.


Assuntos
Líquido da Lavagem Broncoalveolar , Hospedeiro Imunocomprometido , Pneumonia por Pneumocystis , Sensibilidade e Especificidade , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/microbiologia , Humanos , Líquido da Lavagem Broncoalveolar/microbiologia , Reação em Cadeia da Polimerase/métodos , Escarro/microbiologia , Sistema Respiratório/microbiologia , Pneumocystis carinii/genética , Pneumocystis carinii/isolamento & purificação , Infecções por HIV/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos
11.
Clin Infect Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742844

RESUMO

In a large, multi-regional cohort of African infants with HIV exposure, 44% of those with a positive HIV PCR lacked a confirmatory positive test. Efforts are needed to ensure high-fidelity implementation of HIV testing algorithms, so that all positive results are confirmed thereby reducing the risk of potentially false-positive results.

12.
Clin Infect Dis ; 78(3): 573-581, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097379

RESUMO

BACKGROUND: Multiplex molecular diagnostic panels have greatly enhanced detection of gastrointestinal pathogens. However, data on the impact of these tests on clinical and patient-centered outcomes are limited. METHODS: We conducted a prospective, multicenter, stepped-wedge trial to determine the impact of multiplex molecular testing at 5 academic children's hospitals on children presenting to the emergency department with acute gastroenteritis. Caregivers were interviewed on enrollment and 7-10 days after enrollment to determine symptoms, risk factors, subsequent medical visits, and impact on family members. During the pre-intervention period, diagnostic testing was performed at the clinician's discretion . During the intervention period, multiplex molecular testing was performed on all children, with results available to clinicians. The primary outcome was return visits to a healthcare provider within 10 days of enrollment. RESULTS: Potential pathogens were identified by clinician-ordered tests in 19 of 571 (3.3%) in the pre-intervention period compared with 434 of 586 (74%) in the intervention period; clinically relevant pathogens were detected in 2.1% and 15%, respectively. In the multivariate model, the intervention was associated with a 21% reduction in the odds of any return visit (odds ratio, 0.79; 95% confidence interval, .70-.90) after adjusting for potential confounders. Appropriate treatment was prescribed in 11.3% compared with 19.6% during the intervention period (P = .22). CONCLUSIONS: Routine molecular multiplex testing for all children who presented to the ED with acute gastroenteritis detected more clinically relevant pathogens and led to a 21% decrease in return visits. Additional research is needed to define patients most likely to benefit from testing. Clinical Trials Registration. NCT02248285.


Assuntos
Gastroenterite , Criança , Humanos , Serviço Hospitalar de Emergência , Gastroenterite/diagnóstico , Gastroenterite/tratamento farmacológico , Técnicas de Diagnóstico Molecular/métodos , Estudos Prospectivos , Fatores de Risco
13.
Clin Infect Dis ; 78(1): 57-64, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37556365

RESUMO

BACKGROUND: An early report has shown the clinical benefit of the asymptomatic preoperative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening test, and some clinical guidelines recommended this test. However, the cost-effectiveness of asymptomatic screening was not evaluated. We aimed to investigate the cost-effectiveness of universal preoperative screening of asymptomatic patients for SARS-CoV-2 using polymerase chain reaction (PCR) testing. METHODS: We evaluated the cost-effectiveness of asymptomatic screening using a decision tree model from a payer perspective, assuming that the test-positive rate was 0.07% and the screening cost was 8500 Japanese yen (JPY) (approximately 7601 US dollars [USD]). The input parameter was derived from the available evidence reported in the literature. A willingness-to-pay threshold was set at 5 000 000 JPY/quality-adjusted life-year (QALY). RESULTS: The incremental cost of 1 death averted was 74 469 236 JPY (approximately 566 048 USD) and 291 123 368 JPY/QALY (approximately 2 212 856 USD/QALY), which was above the 5 000 000 JPY/QALY willingness-to-pay threshold. The incremental cost-effectiveness ratio fell below 5 000 000 JPY/QALY only when the test-positive rate exceeded 0.739%. However, when the probability of developing a postoperative pulmonary complication among SARS-CoV-2-positive patients was below 0.22, asymptomatic screening was never cost-effective, regardless of how high the test-positive rate became. CONCLUSIONS: Asymptomatic preoperative universal SARS-CoV-2 PCR screening is not cost-effective in the base case analysis. The cost-effectiveness mainly depends on the test-positive rate, the frequency of postoperative pulmonary complications, and the screening costs; however, no matter how high the test-positive rate, the cost-effectiveness is poor if the probability of developing postoperative pulmonary complications among patients positive for SARS-CoV-2 is sufficiently reduced.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Análise Custo-Benefício , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Anos de Vida Ajustados por Qualidade de Vida , Teste para COVID-19
14.
Clin Infect Dis ; 78(7): e385-e415, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38112284

RESUMO

Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19) and for identifying asymptomatic carriage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The number of available SARS-CoV-2 nucleic acid detection tests continues to increase as does the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) developed an evidence-based diagnostic guideline to assist clinicians, clinical laboratorians, patients, and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss nuances of test result interpretation in a variety of practice settings, and highlight important unmet research needs related to COVID-19 diagnostic testing. IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel agreed on 12 diagnostic recommendations. Access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention, and the public health response to COVID-19 infection. Information on the clinical performance of available tests continues to grow, but the quality of evidence of the current literature to support this updated molecular diagnostic guideline remains moderate to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is suggested for asymptomatic individuals with known or suspected contact with a COVID-19 case when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions. Evidence in support of rapid testing and testing of upper respiratory specimens other than nasopharyngeal swabs, which offer logistical advantages, is sufficient to warrant conditional recommendations in favor of these approaches.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/normas , Teste de Ácido Nucleico para COVID-19/métodos , Estados Unidos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/métodos , Teste para COVID-19/métodos , Teste para COVID-19/normas , Técnicas de Amplificação de Ácido Nucleico/normas , Técnicas de Amplificação de Ácido Nucleico/métodos
15.
Lab Invest ; 104(2): 100300, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042496

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissues are the primary source of DNA for companion diagnostics (CDx) of cancers. Degradation of FFPE tissue DNA and inherent tumor heterogeneity constitute serious challenges in current CDx assays. To address these limitations, we introduced sequence artifact elimination and mutation enrichment to MeltArray, a highly multiplexed PCR approach, to establish an integrated protocol that provides accuracy, ease of use, and rapidness. Using PIK3CA mutations as a model, we established a MeltArray protocol that could eliminate sequence artifacts completely and enrich mutations from 23.5- to 59.4-fold via a single-reaction pretreatment step comprising uracil-DNA-glycosylase excision and PCR clamping. The entire protocol could identify 13 PIK3CA hotspot mutations of 0.05% to 0.5% mutant allele fractions within 5 hours. Evaluation of 106 breast cancer and 40 matched normal FFPE tissue samples showed that all 47 PIK3CA mutant samples were from the cancer tissue, and no false-positive results were detected in the normal samples. Further evaluation of 105 colorectal and 40 matched normal FFPE tissue samples revealed that 11 PIK3CA mutants were solely from the cancer sample. The detection results of our protocol were consistent with those of the droplet digital PCR assays that underwent sequence artifact elimination. Of the 60 colorectal samples with next-generation sequencing results, the MeltArray protocol detected 2 additional mutant samples with low mutant allele fractions. We conclude that the new protocol provides an improved alternative to current CDx assays for detecting tumor mutations in FFPE tissue DNA.


Assuntos
Artefatos , Neoplasias Colorretais , Humanos , Inclusão em Parafina , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase Multiplex , DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Formaldeído
16.
Mol Pain ; 20: 17448069241259535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773702

RESUMO

Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms. To induce MB-induced cutaneous toxicity, we injected 64 adult male Sprague-Dawley rates with 200 µL saline (vehicle) or 1%, 0.1%, or 0.01% MB in the plantar hind paws. Paw swelling, skin histologic changes, and heat and mechanical hyperalgesia were measured. Injection of 1%, but not 0.1% or 0.01% MB, produced significant paw swelling compared to saline. Injection of 1% MB produced heat hyperalgesia but not mechanical hyperalgesia. Pain behaviors were unchanged following injections of 0.1% or 0.01% MB. Global transcriptomic analysis by RNAseq identified 117 differentially expressed genes (111 upregulated, 6 downregulated). Ingenuity Pathway Analysis showed an increased quantity of leukocytes, increased lipids, and decreased apoptosis of myeloid cells and phagocytes with activation of IL-1ß and Fos as the two major regulatory hubs. qPCR showed a 16-fold increase in IL-6 mRNA. Thus, using a novel rat model of MB-induced cutaneous toxicity, we show that infiltration of 1% MB into cutaneous tissue causes a dose-dependent pro-inflammatory response, highlighting potential roles of IL-6, IL-1ß, and Fos. Thus, anesthesiologists should administer dilute MB intravenously through peripheral venous catheters. Higher concentrations of MB (1%) should be administered through a central venous catheter to minimize the risk of cutaneous toxicity.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Inflamação , Azul de Metileno , Ratos Sprague-Dawley , Pele , Animais , Masculino , Azul de Metileno/farmacologia , Azul de Metileno/administração & dosagem , Hiperalgesia/patologia , Hiperalgesia/induzido quimicamente , Inflamação/patologia , Inflamação/induzido quimicamente , Pele/efeitos dos fármacos , Pele/patologia , Relação Dose-Resposta a Droga , Temperatura Alta , Ratos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
17.
Cancer ; 130(5): 713-726, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819686

RESUMO

BACKGROUND: Philadelphia chromosome (Ph)-like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. METHODS: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. RESULTS: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p < .05), male preponderance (p < .05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p < .05) in Ph-like ALL cases. CONCLUSIONS: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. PLAIN LANGUAGE SUMMARY: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)-like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Cromossomo Filadélfia , Hibridização in Situ Fluorescente , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda
18.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566117

RESUMO

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Assuntos
DNA Polimerase Dirigida por DNA , Uracila , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por DNA/genética , Uracila/metabolismo , Plasmídeos , DNA
19.
Small ; : e2403672, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970560

RESUMO

Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.

20.
Small ; : e2404641, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152925

RESUMO

Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa