Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(16): 15629-15640, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37534591

RESUMO

Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS2 monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. Ab initio models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS2 growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS2 is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS2 transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS2, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS2. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.

2.
Adv Sci (Weinh) ; 9(31): e2203400, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071030

RESUMO

Carrier multiplication (CM), multiexciton generation by absorbing a single photon, enables disruptive improvements in photovoltaic conversion efficiency. However, energy conservation constrains the threshold energy to at least twice bandgap (2 E g $ E_\text{g}$ ). Here, a below threshold limit CM in monolayer transition metal dichalcogenides (TMDCs) is reported. Surprisingly, CM is observed with excitation energy of only 1.75 E g $E_\text{g}$ due to lattice vibrations. Electron-phonon coupling (EPC) results in significant changes in electronic structures, which favors CM. Indeed, the strongest EPC in monolayer MoS2 leads to the most efficient CM among the studied TMDCs. For practical applications, chalcogen vacancies can further lower the threshold by introducing defect states within bandgap. In particular, for monolayer WS2 , CM occurs with excitation energy as low as 1.51 E g $E_\text{g}$ . The results identify TMDCs as attractive candidate materials for efficient optoelectronic devices with the advantages of high photoconductivity and efficient CM.

3.
ACS Nano ; 14(12): 17114-17124, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33284600

RESUMO

Transition metal dichalcogenides (TMDs), due to their fascinating properties, have emerged as potential next-generation semiconducting nanomaterials across diverse fields of applications. When combined with other material systems, precise control of the intrinsic properties of the TMDs plays a vital role in maximizing their performance. Defect-induced atomic doping through introduction of a chalcogen vacancy into the TMDs lattices is known to be a promising strategy for modulating their characteristic properties. As a result, there is a need to develop tunable and scalable synthesis routes to achieve vacancy-modulated TMDs. Herein, we propose a facile liquid-phase ligand exchange approach for scalable, uniform, and vacancy-tunable synthesis of TMDs films. Varying the relative molar ratio of the chalcogen to transition metal precursors enabled the in situ modulation of the chalcogen vacancy concentrations without necessitating additional post-treatments. When employed as the electrocatalyst in the hydrogen evolution reaction (HER), the vacancy-modulated TMDs, exhibiting a synergetic effect on the energy level matching to the reduction potential of water and optimized free energy differences in the HER pathways, showed a significant enhancement in the hydrogen production via the improved charge transfer kinetics and increased active sites. The proposed approach for synthesizing tunable vacancy-modulated TMDs with wafer-scale synthesis capability is, therefore, promising for better practical applications of TMDs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa