Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891798

RESUMO

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Assuntos
Disbiose , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Mimetismo Molecular , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Lúpus Eritematoso Sistêmico/metabolismo , Humanos , Mimetismo Molecular/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/imunologia , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Autoanticorpos/imunologia , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoimunidade
2.
Neurogenetics ; 20(2): 109-115, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972502

RESUMO

Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.


Assuntos
Alelos , Epilepsia/genética , Variação Genética , Proteínas de Choque Térmico HSP40/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Criança , Consanguinidade , Exoma , Feminino , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Mutação , Linhagem , Fenótipo , Arábia Saudita , Sequenciamento do Exoma , Adulto Jovem
3.
Cells ; 13(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38334609

RESUMO

The putative pathogenic roles and therapeutic potential of the chaperone system (CS) in amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are reviewed to provide a bibliographic and conceptual platform for launching research on the diagnostic and therapeutic applications of CS components. Various studies suggest that dysfunction of the CS contributes to the pathogenesis of ALS and MS, and here, we identify some of the implicated CS members. The physiology and pathophysiology of the CS members can be properly understood if they are studied or experimentally or clinically manipulated for diagnostic or therapeutic purposes, bearing in mind that they belong to a physiological system with multiple interacting and dynamic components, widespread throughout the body, intra- and extracellularly. Molecular chaperones, some called heat shock protein (Hsp), are the chief components of the CS, whose canonical functions are cytoprotective. However, abnormal chaperones can be etiopathogenic factors in a wide range of disorders, chaperonopathies, including ALS and MS, according to the data reviewed. Chaperones typically form teams, and these build functional networks to maintain protein homeostasis, the canonical role of the CS. However, members of the CS also display non-canonical functions unrelated to protein homeostasis. Therefore, chaperones and other members of the CS, if abnormal, may disturb not only protein synthesis, maturation, and migration but also other physiological processes. Thus, in elucidating the role of CS components in ALS and MS, one must look at protein homeostasis abnormalities and beyond, following the clues emerging from the works discussed here.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Múltipla , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Múltipla/terapia , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo
4.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37283936

RESUMO

This review highlights ten important advances in the neuromuscular disease field that were reported in 2022. As with prior updates in this article series, the overarching topics include (i) advances in understanding of fundamental neuromuscular biology; (ii) new / emerging diseases; (iii) advances in understanding of disease etiology and pathogenesis; (iv) diagnostic advances; and (v) therapeutic advances. Within this general framework, the individual disease entities that are discussed in more detail include neuromuscular complications of COVID-19 (another look at the topic first covered in the 2021 and 2022 reviews), DNAJB4-associated myopathy, NMNAT2-deficient hereditary axonal neuropathy, Guillain-Barré syndrome, sporadic inclusion body myositis, and amyotrophic lateral sclerosis. In addition, the review highlights a few other advances (including new insights into mechanisms of fiber maturation during muscle regeneration and fiber rebuilding following reinnervation, improved genetic testing methods for facioscapulohumeral and myotonic muscular dystrophies, and the use of SARM1 inhibitors to block Wallerian degeneration) that will be of significant interest for clinicians and researchers who specialize in neuromuscular disease.

5.
Front Mol Biosci ; 8: 787260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957217

RESUMO

The Hsp90 molecular chaperone, along with a set of approximately 50 cochaperones, mediates the folding and activation of hundreds of cellular proteins in an ATP-dependent cycle. Cochaperones differ in how they interact with Hsp90 and their ability to modulate ATPase activity of Hsp90. Cochaperones often compete for the same binding site on Hsp90, and changes in levels of cochaperone expression that occur during neurodegeneration, cancer, or aging may result in altered Hsp90-cochaperone complexes and client activity. This review summarizes information about loss-of-function mutations of individual cochaperones and discusses the overall association of cochaperone alterations with a broad range of diseases. Cochaperone mutations result in ciliary or muscle defects, neurological development or degeneration disorders, and other disorders. In many cases, diseases were linked to defects in established cochaperone-client interactions. A better understanding of the functional consequences of defective cochaperones will provide new insights into their functions and may lead to specialized approaches to modulate Hsp90 functions and treat some of these human disorders.

6.
Front Mol Biosci ; 7: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766281

RESUMO

Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.

7.
Neuromuscul Disord ; 30(1): 38-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31955980

RESUMO

Eight patients from five families with undiagnosed dominant distal myopathy underwent clinical, neurophysiological and muscle biopsy examinations. Molecular genetic studies were performed using targeted sequencing of all known myopathy genes followed by segregation of the identified mutations in the affected families using Sanger sequencing. Two novel mutations in DNAJB6 J domain, c.149C>T (p.A50V) and c.161A>C (p.E54A), were identified as the cause of disease. The muscle involvement with p.A50V was distal calf-predominant, and the p.E54A was more proximo-distal. Histological findings were similar to those previously reported in DNAJB6 myopathy. In line with reported pathogenic mutations in the glycine/phenylalanine (G/F) domain of DNAJB6, both the novel mutations showed reduced anti-aggregation capacity by filter trap assay and TDP-43 disaggregation assays. Modeling of the protein showed close proximity of the mutated residues with the G/F domain. Myopathy-causing mutations in DNAJB6 are not only located in the G/F domain, but also in the J domain. The identified mutations in the J domain cause dominant distal and proximo-distal myopathy, confirming that mutations in DNAJB6 should be considered in distal myopathy cases.


Assuntos
Miopatias Distais/genética , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Miopatias Distais/diagnóstico , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
8.
Front Pharmacol ; 10: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800066

RESUMO

Inflammatory bowel disease (IBD) encompasses various pathological conditions similar but distinct that share a multifactorial etiology, including involvement of the intestinal barrier function, the immune system, and intestinal microorganisms. Hsp60 is a chaperonin component of the chaperoning system, present in all cells and tissues, including the intestine. It plays important roles in cell physiology outside and inside mitochondria, its canonical place of residence. However, Hsp60 can also be pathogenic in many conditions, the Hsp60 chaperonopathies, possibly including IBD. The various clinico-pathological types of IBD have a complicated mix of causative factors, among which Hsp60 can be considered a putatively important driver of events and could play an etiopathogenic role. This possibility is discussed in this review. We also indicate that Hsp60 can be a biomarker useful in disease diagnosing and monitoring and, if found active in pathogenesis, should become a target for developing new therapies. The latter are particularly needed to alleviate patient suffering and to prevent complications, including colon cancer.

9.
Skelet Muscle ; 8(1): 28, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30153853

RESUMO

BACKGROUND: Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. METHODS: We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. RESULTS: Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. CONCLUSIONS: Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity.


Assuntos
Caveolina 3/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Animais , Caveolina 3/genética , Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático , Matriz Extracelular/metabolismo , Humanos , Camundongos , Músculo Esquelético/ultraestrutura , Distrofia Muscular do Cíngulo dos Membros/patologia , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Sarcolema/metabolismo
10.
Mol Neurobiol ; 55(3): 2524-2546, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28401474

RESUMO

SIL1 acts as a co-chaperone for the major ER-resident chaperone BiP and thus plays a role in many BiP-dependent cellular functions such as protein-folding control and unfolded protein response. Whereas the increase of BiP upon cellular stress conditions is a well-known phenomenon, elevation of SIL1 under stress conditions was thus far solely studied in yeast, and different studies indicated an adverse effect of SIL1 increase. This is seemingly in contrast with the beneficial effect of SIL1 increase in surviving neurons in neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we addressed these controversial findings. Applying cell biological, morphological and biochemical methods, we demonstrated that SIL1 increases in various mammalian cells and neuronal tissues upon cellular stress. Investigation of heterozygous SIL1 mutant cells and tissues supported this finding. Moreover, SIL1 protein was found to be stabilized during ER stress. Increased SIL1 initiates ER stress in a concentration-dependent manner which agrees with the described adverse SIL1 effect. However, our results also suggest that protective levels are achieved by the secretion of excessive SIL1 and GRP170 and that moderately increased SIL1 also ameliorates cellular fitness under stress conditions. Our immunoprecipitation results indicate that SIL1 might act in a BiP-independent manner. Proteomic studies showed that SIL1 elevation alters the expression of proteins including crucial players in neurodegeneration, especially in Alzheimer's disease. This finding agrees with our observation of increased SIL1 immunoreactivity in surviving neurons of Alzheimer's disease autopsy cases and supports the assumption that SIL1 plays a protective role in neurodegenerative disorders.


Assuntos
Rastreamento de Células , Cérebro/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Animais , Rastreamento de Células/métodos , Células Cultivadas , Cérebro/química , Cérebro/citologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/análise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteômica/métodos
11.
Oncotarget ; 8(40): 68493-68516, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978133

RESUMO

SIL1 is a ubiquitous protein of the Endoplasmic Reticulum (ER) acting as a co-chaperone for the ER-resident chaperone, BiP. Recessive mutations of the corresponding gene lead to vulnerability of skeletal muscle and central nervous system in man (Marinesco-Sjögren syndrome; MSS) and mouse. However, it is still unclear how loss of ubiquitous SIL1 leads to selective vulnerability of the nervous system and skeletal muscle whereas other cells and organs are protected from clinical manifestations. In this study we aimed to disentangle proteins participating in selective vulnerability of SIL1-deficient cells and tissues: morphological examination of MSS patient-derived lymphoblastoid cells revealed altered organelle structures (ER, nucleus and mitochondria) thus showing subclinical vulnerability. To correlate structural perturbations with biochemical changes and to identify proteins potentially preventing phenotypical manifestation, proteomic studies have been carried out. Results of proteomic profiling are in line with the morphological findings and show affection of nuclear, mitochondrial and cytoskeletal proteins as well as of such responsible for cellular viability. Moreover, expression patterns of proteins known to be involved in neuromuscular disorders or in development and function of the nervous system were altered. Paradigmatic findings were confirmed by immunohistochemistry of splenic lymphocytes and the cerebellum of SIL1-deficient mice. Ataxin-10, identified with increased abundance in our proteome profile, is necessary for the neuronal survival but also controls muscle fiber apoptosis, thus declaring this protein as a plausible candidate for selective tissue vulnerability. Our combined results provide first insights into the molecular causes of selective cell and tissue vulnerability defining the MSS phenotype.

12.
Mol Neurobiol ; 53(8): 5527-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26468156

RESUMO

SIL1 acts as nucleotide exchange factor for the endoplasmic reticulum chaperone BiP. Mutations of SIL1 cause Marinesco-Sjögren syndrome (MSS), a neurodegenerative disorder. Moreover, a particular function of SIL1 for etiopathology of amyotrophic lateral sclerosis (ALS) was highlighted, thus declaring the functional SIL1-BiP complex as a modifier for neurodegenerative disorders. Thereby, depletion of SIL1 was associated with an earlier manifestation and in strengthened disease progression in ALS. Owing to the absence of appropriate in vitro models, the precise cellular pathophysiological mechanisms leading to neurodegeneration in MSS and triggering the same in further disorders like ALS are still elusive. We found that SIL1 depletion in human embryonic kidney 293 (HEK293) cells led to structural changes of the endoplasmic reticulum (ER) including the nuclear envelope and mitochondrial degeneration that closely mimic pathological alterations in MSS and ALS. Functional studies revealed disturbed protein transport, cytotoxicity with reduced proliferation and viability, accompanied by activation of cellular defense mechanisms including the unfolded protein response, ER-associated degradation pathway, proteolysis, and expression of apoptotic and survival factors. Our data moreover indicated that proteins involved in cytoskeletal organization, vesicular transport, mitochondrial function, and neurological processes contribute to SIL1 pathophysiology. Altered protein expression upon SIL1 depletion in vitro could be confirmed in Sil1-deficient motoneurones for paradigmatic proteins belonging to different functional classes. Our results demonstrate that SIL1-depleted HEK293 cells are an appropriate model to identify proteins modulated by SIL1 expression level and contributing to neurodegeneration in MSS and further disorders like ALS. Thereby, our combined results point out that proteins beyond such involved ER-related protein processing are affected by SIL1 depletion.


Assuntos
Retículo Endoplasmático/metabolismo , Precursores de Proteínas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteoma/metabolismo , Frações Subcelulares/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa