Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6441-6449, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757836

RESUMO

In the realm of condensed matter physics and materials science, charge density waves (CDWs) have emerged as a captivating way to modulate correlated electronic phases and electron oscillations in quantum materials. However, collectively and efficiently tuning CDW order is a formidable challenge. Herein, we introduced a novel way to modulate the CDW order in 1T-TaS2 via stacking engineering. By introducing shear strain during the electrochemical exfoliation, the thermodynamically stable AA-stacked TaS2 consecutively transform into metastable ABC stacking, resulting in unique 3a × 1a CDW order. By decoupling atom coordinates, we atomically deciphered the 3D subtle structural variations in trilayer samples. As suggested by density functional theory (DFT) calculations, the origin of CDWs is presumably due to collective excitations and charge modulation. Therefore, our works shed light on a new avenue to collectively modulate the CDW order via stackingtronics and unveiled novel mechanisms for triggering CDW formation via charge modulation.

2.
Electrophoresis ; 45(7-8): 752-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38143284

RESUMO

We report the possibilities of achieving highly controlled segregation of ion-enriched and ion-depleted regions in straight nanochannels. This is achieved via harnessing the interplay of an axial gradient of the induced transverse electric field on account of electrical double layer phenomenon and the localized thickening of the fluid because of intensified electric fields due to the large spatial gradients of the electrical potential in extreme confinements. By considering alternate surface patches of different charge densities over pre-designed axial spans, we illustrate how these effects can be exploited to realize selectively ion-enriched and ion-depleted zones. Physically, this is attributed to setting up of an axial concentration gradient that delves on the ionic advection due to the combined effect of an externally applied electric field and induced back-pressure gradient along the channel axis and electro-migration due to the combinatorial influences of the applied and the induced electrostatic fields. With an explicit handle on the pertinent parameters, our results offer insights on the possible means of imposing delicate controls on the solute-enrichment and depletion phenomena, a paradigm that remained unexplored thus far.


Assuntos
Íons , Eletricidade Estática , Íons/química , Nanotecnologia/métodos , Propriedades de Superfície , Nanoestruturas/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Campos Eletromagnéticos
3.
Nano Lett ; 22(14): 5635-5640, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35838660

RESUMO

Here, we use low-temperature scanning tunneling microscopy and spectroscopy to study the polar surfaces of PdCoO2. On the CoO2-terminated polar surface, we detect the quasiparticle interference pattern originating from the Rashba-like spin-split surface states. On the well-ordered Pd-terminated polar surface, we observe a regular lattice that has a larger lattice constant than the atomic lattice of PdCoO2. In comparison with the shape of the hexagonal Fermi surface on the Pd-terminated surface, we identify this regular lattice as a fully two-dimensional incommensurate charge modulation that is driven by the Fermi surface nesting. More interestingly, we also find the moiré pattern induced by the interference between the two-dimensional incommensurate charge modulation in the Pd layer and its atomic lattice. Our results not only show a new charge modulation on the Pd surface of PdCoO2 but also pave the way for fully understanding the novel electronic properties of this material.

4.
Angew Chem Int Ed Engl ; 61(51): e202214773, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36300583

RESUMO

Carbon-based cathodes for aqueous zinc ion hybrid supercapacitors (ZHSCs) typically undergo low Zn ion storage capability due to their electric double layer capacitance (EDLC) energy storage mechanism that is restricted by specific surface area and thickness of electric double layer (EDL). Here, we report a universal surface charge modulation strategy to effectively enhance the capacitance of carbon materials by decreasing the thickness of EDL. Amino groups with lone pair electrons were chosen to increase the surface charge density and enhanced the interaction between carbon electrode and Zn ions, thus effectively compacting the EDL. Consequently, amino functionalized porous carbon based ZHSCs can deliver an ultrahigh capacity of 255.2 mAh g-1 along with excellent cycling stability (95.5 % capacity retention after 50 000 cycles) in 1 M ZnCl2 electrolyte. This study demonstrates the feasibility of EDL modified carbon as Zn2+ storage cathode and great prospect for constructing high performance ZHSCs.

5.
Small ; 17(49): e2103224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611983

RESUMO

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

6.
Small ; 17(17): e2007397, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733607

RESUMO

Widely tunable color emission from a single pixel is a promising but challenging technology for quantum-dot light-emitting diodes (QD-LEDs). Even a QD-LED pixel with stacked multi-QD layers having different colors is likely to emit a monotonic color because the exciton recombination mostly occurs in 1 or 1.5 QD layers with better charge balance. In this study, an all-solution-processed QD-LED with electrically tunable color emission over a wide color range by introducing a charge modulation layer (CML) is developed. Specifically, the CML acted as a high and narrow energy barrier for electrons between two QD layers, and the electron drift is sensitively controlled via the field-dependent tunneling effect. Therefore, the charge distribution and balance in the two QD layers re-electrically tunable, which enhanced the color tunability. The color tuning range and quantum efficiency are effectively controlled depending on the CML material and thickness. In addition, the color change caused by the solvent effect in a QD-LED with dual QD layers is thoroughly investigated. The proposed method may advance the understanding of QD emission behavior with the use of CML and provide a practical approach for the actual application of color-tunable pixel technology.

7.
Angew Chem Int Ed Engl ; 60(38): 20906-20914, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255409

RESUMO

A universal strategy is developed to construct a cascade Z-Scheme system, in which an effective energy platform is the core to direct charge transfer and separation, blocking the unexpected type-II charge transfer pathway. The dimension-matched (001)TiO2 -g-C3 N4 /BiVO4 nanosheet heterojunction (T-CN/BVNS) is the first such model. The optimized cascade Z-Scheme exhibits ≈19-fold photoactivity improvement for CO2 reduction to CO in the absence of cocatalysts and costly sacrificial agents under visible-light irradiation, compared with BVNS, which is also superior to other reported Z-Scheme systems even with noble metals as mediators. The experimental results and DFT calculations based on van der Waals structural models on the ultrafast timescale reveal that the introduced T as the platform prolongs the lifetimes of spatially separated electrons and holes and does not compromise their reduction and oxidation potentials.

8.
Nano Lett ; 17(5): 2816-2824, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28383924

RESUMO

III-V compound semiconductors are indispensable materials for today's high-end electronic and optoelectronic devices and are being explored for next-generation transistor logic and quantum technologies. III-V surfaces and interfaces play the leading role in determining device performance, and therefore, methods to control their electronic properties have been developed. Typically, surface passivation studies demonstrated how to limit the density of surface states. Strain has been widely used to improve the electronic transport properties and optoelectronic properties of III-Vs, but the potential of this technology to modify the surface properties still remains to be explored. Here we show that uniaxial stress induces a shift in the energy of the surface states of III-V nanowires, modifying their electronic properties. We demonstrate this phenomenon by modulating the conductivity of InAs nanowires over 4 orders of magnitude with axial strain ranging between -2.5% in compression and 2.1% in tension. The band bending at the surface of the nanostructure is modified from accumulation to depletion reversibly and reproducibly. We provide evidence of this physical effect using a combination of electrical transport measurement, Raman spectroscopy, band-structure modeling, and technology computer aided design (TCAD) simulations. With this methodology, the deformation potentials for the surface states are quantified. These results reveal that strain technology can be used to shift surface states away from energy ranges in which device performance is negatively affected and represent a novel route to engineer the electronic properties of III-V devices.

9.
Beilstein J Nanotechnol ; 15: 977-994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136041

RESUMO

Over the last few decades, field-effect transistor (FET)-based biosensors have demonstrated great potential across various industries, including medical, food, agriculture, environmental, and military sectors. These biosensors leverage the electrical properties of transistors to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review encompasses an overview of emerging FET-based biosensors and useful guidelines to reach the best device dimensions, favorable design, and realization of FET-based biosensors. Consequently, it furnishes researchers with a detailed perspective on design considerations and applications for future generations of FET-based biosensors. Finally, this article proposes intriguing avenues for further research on the topology of FET-based biosensors.

10.
ACS Appl Mater Interfaces ; 16(25): 32748-32761, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861705

RESUMO

Layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) is usually performed on a conventional ultrafiltration base substrate (negative zeta potential) by depositing a cationic PE as a first layer. Herein, we report the facile and fast formation of high performance molecular selective membrane by the nonelectrostatic adsorption of anionic PE on the polyvinylidene fluoride (PVDF, zeta potential -17 mV) substrate followed by the electrostatic LbL assembly. Loose nanofiltration membranes have been prepared via both concentration-polarization (CP-LbL, under applied pressure) driven and conventional (C-LbL, dipping) LbL self-assembly. When the first layer is poly(styrene sodium) sulfonic acid, the LbL assembled membrane contains free -SO3- groups and exhibits higher rejection of Na2SO4 and lower rejection of MgCl2. The reversal of salt rejection occurs when the first layer is quaternized polyvinyl imidazole (PVIm-Me). The membrane (five layers) prepared by first depositing PStSO3Na shows higher rejection of several dyes (97.9 to >99.9%), higher NaCl to dye separation factor (52-1800), and higher dye antifouling performance as compared to the membrane prepared by first depositing PVIm-Me (97.5-99.5% dye rejection, separation factor ∼40-200). However, the C-LbL membrane requires a longer time of self-assembly or higher PE concentration to reach a performance close to the CP-LbL membranes. The membranes exhibit excellent pressure, pH (3-12), and salt (60 g L-1) stability. This work provides an insight for the construction of low fouling and high-performance membranes for the fractionation of dye and salt based on the LbL self-assembly sequence.

11.
Theranostics ; 12(5): 1988-1998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265194

RESUMO

Extracellular vesicles (EVs) carry information inherited from parental cells, having significant potential for disease diagnosis. In blood, however, EVs are outnumbered >104-fold by low density lipoproteins (LDLs), yet similar in size and density. These fundamental disadvantages often cause LDL spillover into EV isolates, thus confounding assay results. We hypothesized that EVs can be further separated from LDLs based on electric charge: EVs and LDLs have different lipid composition, which can lead to differential surface charge densities. To test this hypothesis, we modeled and quantified the surface charge of EVs and LDLs, and used the information to optimally separate EVs from LDLs via ion-exchange chromatography. Methods: We built an enhanced dual-mode chromatography (eDMC) device which performed i) size-exclusion to remove particles smaller than EVs and LDLs and ii) cation-exchange in an acidic elution to retain LDLs longer than EVs. The performance of the eDMC, in comparison to size-exclusion only, was evaluated by analyzing the yield and purity of the isolated EVs. Results: By measuring and modeling zeta potentials at different buffer pH, we estimated surface charge densities of EVs (-6.2 mC/m2) and LDLs (-3.6 mC/m2), revealing that EVs are more negatively charged than LDLs. Furthermore, the charge difference between EVs and LDLs was maximal at a weak acidic condition (pH = 6.4). By applying these findings, we optimized eDMC operation to enrich EVs directly from plasma, depleting >99.8% of LPPs within 30 min. Minimizing LDL contamination improved analytical signals in EV molecular assays, including single vesicle imaging, bulk protein measurements, and mRNA detection. Conclusions: These developments will promote the translational value of the dual-mode separation - a fast, equipment-free, and non-biased way for EV isolation from plasma samples.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Lipoproteínas LDL/metabolismo , Plasma/metabolismo , Proteômica , RNA Mensageiro/metabolismo
12.
ChemSusChem ; 15(3): e202101674, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34873862

RESUMO

CO2 capture and separation by using charge-modulated adsorbent materials is a promising strategy to reduce CO2 emissions. Herein, three TM-HAB (TM=Co, Ni, and Cu; HAB=hexa-aminobenzene) metal-organic frameworks (MOFs) were evaluated as charge-modulated CO2 capture and separation materials by using density functional theory and grand canonical Monte Carlo simulations. The results showed that each TM-HAB presented a high electrical conductivity and structural stability when injecting charges. The CO2 adsorption energy increased from 0.211 to 2.091 eV on Co-HAB, 0.262 to 2.119 eV on Ni-HAB, and 0.904 to 2.803 eV on Cu-HAB, respectively, with the increase in charge state from 0.0 to 3.0 e- . Co-HAB and Ni-HAB were better charge-modulated CO2 capture materials with less structure deformation based on energy decomposition analyses. The kinetic process demonstrated that considerably low energy consumptions of 0.911 and 1.589 GJ ton-1 CO2 were observed for a complete adsorption-desorption cycle on Co-HAB and Ni-HAB. All charged MOFs, especially Co-HAB and Ni-HAB, exhibited higher CO2 adsorption energies and adsorption capacities than those of H2 , N2 , and CH4 , thereby exhibiting high CO2 selectivities. Interaction analysis confirmed that the injecting charges had a more pronounced enhancement in the coulombic interactions between CO2 and MOFs. The results of this work highlight Co-HAB and Ni-HAB as promising charge-modulated CO2 capture and separation materials with controllable CO2 capture, high selectivity, and low energy consumption.

13.
J Colloid Interface Sci ; 605: 571-581, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340041

RESUMO

Considering versatile potential applications of bioinspired membranes, we simulate the electrokinetic behavior of a cylindrical nanopore, surface modified by a polyelectrolyte (PE) layer. Taking account of the effect of electroosmotic flow and an additionally applied pH gradient, the influences of the strength of the pH gradient, the PE layer thickness, the length of the nanopore and its radius on its conductance and ion current rectification (ICR) performance are assessed. We show that if pHU (the pH at the higher pH end of the nanopore) is fixed at 11 and pHL (the pH at the lower pH end of the nanopore) varies from 3 to 11, the rectification factor Rf has a local maximum occurring in 6 < pHL <8; the greater the magnitude of the applied potential bias |V| the smaller the pHL at which the local maximum occurs. The influence of the PE layer thickness on the nanopore rectification performance is important only if 5 < pHL <8, and the optimum performance is reached at a medium thick PE layer (ca. 3 nm). Possible mechanisms associated with the ion transport phenomenon under consideration are proposed and discussed in detail.


Assuntos
Nanoporos , Eletro-Osmose , Concentração de Íons de Hidrogênio , Transporte de Íons , Polieletrólitos
14.
Adv Sci (Weinh) ; 8(3): 2001493, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552849

RESUMO

High-temperature pyrolysis of nitrogen (N)-rich, crystalline porous organic architectures in the presence of a metal precursor is an important chemical process in heterogeneous catalysis for the fabrication of highly porous N-carbon-supported metal catalysts. Herein, covalent triazine framework (CTF) and CTF-I (that is, CTF after charge modulation with iodomethane) are presented as sacrificial templates, for the synthesis of carbon-supported Ru catalysts-Ru-CTF-900 and Ru-CTF-I-900 respectively, following high-temperature pyrolysis at 900 °C under N2 atmosphere. Predictably, the dispersed Ru on pristine CTF carrier suffered severe sintering of the Ru nanoparticles (NPs) during heat treatment at 900 °C. However, the Ru-CTF-I-900 catalyst is composed of ultra-small Ru NPs and abundant Ru single atoms which may have resulted from much stronger Ru-N interactions. Through modification of the micro-environment within the CTF architecture, Ru precursor interacted on charged-modulated CTF framework shows electrostatic repulsion and steric hindrance, thus contributing toward the high density of single Ru atoms and even smaller Ru NPs after pyrolysis. A Ru-Ru coordination number of only 1.3 is observed in the novel Ru-CTF-I-900 catalyst, which exhibits significantly higher catalytic activity than Ru-CTF-900 for transfer hydrogenation of acetophenone.

15.
ACS Nano ; 15(6): 10451-10463, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34048654

RESUMO

The controlled covalent functionalization of semiconducting single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects leads to additional narrow and tunable photoluminescence features in the near-infrared and even enables single-photon emission at room temperature, thus strongly expanding their application potential. However, the successful integration of sp3-functionalized SWCNTs in optoelectronic devices with efficient defect state electroluminescence not only requires control over their emission properties but also a detailed understanding of the impact of functionalization on their electrical performance, especially in dense networks. Here, we demonstrate ambipolar, light-emitting field-effect transistors based on networks of pristine and functionalized polymer-sorted (6,5) SWCNTs. We investigate the influence of sp3 defects on charge transport by employing electroluminescence and (charge-modulated) photoluminescence spectroscopy combined with temperature-dependent current-voltage measurements. We find that sp3-functionalized SWCNTs actively participate in charge transport within the network as mobile carriers efficiently sample the sp3 defects, which act as shallow trap states. While both hole and electron mobilities decrease with increasing degree of functionalization, the transistors remain fully operational, showing electroluminescence from the defect states that can be tuned by the defect density.

16.
ACS Appl Mater Interfaces ; 13(36): 42513-42521, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473477

RESUMO

We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.


Assuntos
Técnicas Biossensoriais/métodos , Vesículas Extracelulares/química , Eletricidade Estática , Anticorpos Imobilizados/imunologia , Antígeno B7-H1/análise , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Receptores ErbB/análise , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Humanos , Limite de Detecção , Inibidores de Proteínas Quinases/farmacologia , Tetraspanina 29/análise , Tetraspanina 29/metabolismo
17.
ACS Nano ; 14(2): 2412-2423, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31999430

RESUMO

Solution-processed networks of semiconducting, single-walled carbon nanotubes (SWCNTs) have attracted considerable attention as materials for next-generation electronic devices and circuits. However, the impact of the SWCNT network composition on charge transport on a microscopic level remains an open and complex question. Here, we use charge-modulated absorption and photoluminescence spectroscopy to probe exclusively the mobile charge carriers in monochiral (6,5) and mixed SWCNT network field-effect transistors. Ground-state bleaching and charge-induced trion absorption features as well as exciton quenching are observed depending on applied voltage and modulation frequency. Through correlation of the modulated mobile carrier density and the optical response of the nanotubes, we find that charge transport in mixed SWCNT networks depends strongly on the diameter and thus bandgap of the individual species. Mobile charges are preferentially transported by small bandgap SWCNTs especially at low gate voltages, whereas large bandgap species only start to participate at higher carrier concentrations. Our results demonstrate the excellent suitability of modulation spectroscopy to investigate charge transport in nanotube network transistors and highlight the importance of SWCNT network composition for their performance.

18.
J Hazard Mater ; 387: 121667, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31791860

RESUMO

Water pollution by heavy metal ions especially Hg(II) and Pb(II) is one of the most important concerns because of their harmful effects on human health and environment sustainability. Here, we developed Fe3O4@TMU-32 metal-organic framework (MOF)-based nanocomposite by applying pore functionalization and surface-charge modulation strategies. Based on synergic effects of these strategies, Fe3O4@TMU-32 nanocomposite shows very high capacity toward Hg(II) and Pb(II) metal ions. TMU-32 (with formula [Zn(OBA)(DPU)]·2DMF·H2O where H2OBA and DPU are (4,4'-oxybis(benzoic acid)) and 1,3-di(pyridin-4-yl)urea)) is decorated with urea functional groups containing carbonyl and amine groups that can interact with metal ions. As results, TMU-32 show very high capacity toward Hg(II) and Pb(II) ions. To improve the TMU-32 capacity toward Hg(II) and Pb(II) cations, we tried to modulate the surface-charge of TMU-32 as a host-framework. Surface-charge modulation strategy had been conducted through encapsulation of Fe3O4 nanoparticles by TMU-32 in an in-situ synthesis procedure and synthesis of Fe3O4@TMU-32 nanocomposite. Fe3O4@TMU-32 nanocomposite shows improved removal capacity (45 % and 54 % toward Pb(II) and Hg(II)) rather pristine TMU-32 framework because of urea decorated framework and charge modulated surface. Fe3O4@TMU-32 nanocomposite adsorb 1600 mg.g-1 of Pb(II) and 905 mg.g-1 of Hg(II) which extremely rare in the literature. Such improvement can be related to the electrostatic interaction between cationic nature of Pb(II) and Hg(II) and negative charge of the Fe3O4@TMU-32 adsorbent.

19.
ACS Appl Mater Interfaces ; 12(33): 37384-37390, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706573

RESUMO

Several breakthroughs in organic optoelectronic devices with new applications and performance improvement have been made recently by exploiting novel properties of charge transfer complexes (CTCs). In this work, a CTC film formed by coevaporating molybdenum(VI) oxide and pentacene (MoO3:pentacene) shows a strong dipole of 2.4 eV with direction controllability via pre-biasing with an external voltage. While CTCs are most widely known for their much red-shifted energy gaps, there is so far no report on their controllable dipoles. By controlling this dipole with an electrical pre-bias in a MoO3:pentacene CTC based device, current changes over 2 orders of magnitude can be achieved. Kelvin probe force microscopy further confirms that surface potential of the MoO3:pentacene film can be modulated by an external electric field. It is shown for the first time that a dipole of controllable direction can be set up inside a CTC layer by pre-biasing. This concept is further tested by incorporating the CTC layer in organic photovoltaic (OPV) devices. It was demonstrated that by pre-biasing the OPV devices in different directions, their open circuit voltages (Voc) can be significantly tuned via the built-in potentials.

20.
Nanomicro Lett ; 12(1): 140, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34138122

RESUMO

Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa