Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2308767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949814

RESUMO

Dual single-atom catalysts (DSACs) are promising for breaking the scaling relationships and ensuring synergistic effects compared with conventional single-atom catalysts (SACs). Nevertheless, precise synthesis and optimization of DSACs with specific locations and functions remain challenging. Herein, dual single-atoms are specifically incorporated into the layer-stacked bulk-like carbon nitride, featuring in-plane three-coordinated Pd and interplanar four-coordinated Cu (Pd1-Cu1/b-CN) atomic sites, from both experimental results and DFT simulations. Using femtosecond time-resolved transient absorption (fs-TA) spectroscopy, it is found that the in-plane Pd features a charge decay lifetime of 95.6 ps which is much longer than that of the interplanar Cu (3.07 ps). This finding indicates that the in-plane Pd can provide electrons for the reaction as the catalytically active site in both structurally and dynamically favorable manners. Such a well-defined bi-functional cascade system ensures a 3.47-fold increase in CO yield compared to that of bulk-like CN (b-CN), while also exceeding the effects of single Pd1/b-CN and Cu1/b-CN sites. Furthermore, DFT calculations reveal that the inherent transformation from s-p coupling to d-p hybridization between the Pd site and CO2 molecule occurs during the initial CO2 adsorption and hydrogenation processes and stimulates the preferred CO2-to-CO reaction pathway.

2.
Small ; 20(31): e2312104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441363

RESUMO

Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1 h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.

3.
Small ; 20(29): e2311841, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368255

RESUMO

Heterostructures are widely employed in photocatalysis to promote charge separation and photocatalytic activity. However, their benefits are limited by the linkages and contact environment at the interface. Herein, violet phosphorus quantum dots (VPQDs) and graphitic carbon nitride (g-C3N4) are employed as model materials to form VPQDs/g-C3N4 heterostructures by a simple ultrasonic pulse excitation method. The heterostructure contains strong interfacial P-N bonds that mitigate interfacial charge-separation issues. P-P bond breakage occurs in the distinctive cage-like [P9] VPQD units during longitudinal disruption, thereby exposing numerous active P sites that bond with N atoms in g-C3N4 under ultrasonic pulse excitation. The atomic-level interfacial P-N bonds of the Z-scheme VPQDs/g-C3N4 heterostructure serve as photogenerated charge-transfer channels for improved electron-hole separation efficiency. This results in excellent photocatalytic performance with a hydrogen evolution rate of 7.70 mmol g-1 h-1 (over 9.2 and 8.5 times greater than those of pure g-C3N4 and VPQDs, respectively) and apparent quantum yield of 11.68% at 400 nm. Using atomic-level chemical bonds to promote interfacial charge separation in phosphorene heterostructures is a feasible and effective design strategy for photocatalytic water-splitting materials.

4.
ACS Appl Mater Interfaces ; 14(6): 7917-7925, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107982

RESUMO

Fluorinated spacer cations in quasi-2D (Q-2D) perovskites have recently been demonstrated to improve the Q-2D perovskite solar cell (PSC) performance. However, the underlying mechanism of fluorination of organic cations on the improvement is still unclear. Here, using fluorinated benzylammonium (named F-BZA) as a spacer cation in Q-2D Ruddlesden-Popper (RP) perovskites, we deeply investigate the effect of fluorination of organic cations on perovskite crystallization and intermolecular interactions for improving the charge transport and device performance. It is found that fluorination of spacer cations can slow down the crystallization rate of perovskites, resulting in vertically aligned large grains. Moreover, the interaction between the adjacent spacer cations is further enhanced, constructing a new faster charge-transport channel with a lifetime of 77 ps. Accordingly, the carrier mobility is improved by an order of magnitude and a power conversion efficiency (PCE) of 16.82% is achieved in much more stable F-BZA-based Q-2D RP PSCs, 35% higher than that of BZA-based devices (12.39%). Our results elucidate the mechanism and its importance of fluorinating spacer cations for high-performance Q-2D PSC development.

5.
ACS Appl Mater Interfaces ; 12(8): 9872-9880, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31994377

RESUMO

Interface engineering of heterostructured photocatalysts plays a very important role in the transfer and separation process of interfacial charge carriers, but how to regulate the transfer and separation of photogenerated charge carriers still is a huge challenge at the nanometric interface of heterostructures (HCs). Herein, we demonstrate that interfacial chemical bonds can effectively modulate photogenerated charge transfer in nanoclay-based HCs constructed by natural Kaolinite (Kaol) nanosheets and P25-TiO2. Experimental results and density functional theory (DFT) calculations confirm that stable Al-O-Ti bonds form at the interfaces by interactions of the Al-OH groups of Kaol and (101) surfaces of anatase TiO2. The Al-O-Ti bond strengthens the energy band bending of the space charge region near the interfacial bond and thus provides a fast transfer channel for interfacial photogenerated charge, resulting in the boosted charge transfer and separation ability of Kaol/P25 HCs. The findings reported here provide a deeper insight into modulating interfacial charge transfer by chemical bonds and shed new light on interface engineering of efficient heterostructured photocatalysts for environmental applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa