RESUMO
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
RESUMO
The activation of various homopropargylic pyridines by cis-[RuII/OsII(dppm)2Cl2] (dppm = 1,1-bis(diphenylphosphino)methane) has previously been shown to generate a diverse array of metallacycles and metalated heterocyclic complexes. However, a minor structural modification of introducing a halide onto the pyridyl group of the alkyne substrate resulted in the formation of unprecedented Ru(II)/Os(II)-haloquinolizine complexes. These complexes display (1) κ2(X,C)-haloquinolizine chelates arising from the cycloisomerization of HC≡CC(OH)(CH2(6-X-2-py))(Ph) on [RuII/OsII(dppm)2]2+ moieties via a vinylidene pathway, (2) five-membered Ru/Os-X-C-N-C rings (X = F, Cl, Br) ortho- and peri-fused to quinolizinium skeletons, and (3) uncommon M-X-R bonding interactions that are atypical in coordination complexes. Despite being divalent and integrated into a five-membered Ru-X-C-N-C ring system, the X atoms in the Ru(II) complexes are susceptible to substitution by O in the presence of -OH, resulting in the formation of quinolizinium-fused ruthenaoxazole complexes. Overall, this work highlights the importance of considering metal-halocarbon bonding interactions in catalytic or coordination designs.
RESUMO
The comparison of the results of theoretical calculations of (O-Si) chelates of N-silylmethylated amides and ureas with the axial chlorine or fluorine atom at silicon to the data of X-ray analysis of related compounds revealed the formation of covalent O-Si tetrel bonds (TB) or noncovalent Oâ â â Si tetrel bonds (NTB). The nature of the formed tetrel bond depends on the substituents at silicon and the polarity of the medium. The competition between the intramolecular TB and intermolecular hydrogen bonds (HB) with proton donors depends on the center of basicity involved in the formation of HB, which could be either oxygen or halogen. The hydrogen bonding can result in changing the nature of the tetrel bonds from covalent to noncovalent and vice versa by varying their lengths and energies. The O-Si bond energies estimated by QTAIM analysis of N-[(chlorodimethylsilyl)methyl]-N-methylacetamide and its H-complexes vary within the range of 7.2 and 12â kcal/mol in gas and solution, respectively, and correlate with the O-Si bond lengths.
RESUMO
The review compiles information on the spectral classification of flavonoids, the changes in their electronic structure upon complex formation, and the manifestation of these changes in the absorption and emission spectra. Part of the review is devoted to the regioselectivity of the complex formation process, including types of complexation sites, the structure of chelates and 'open' complexes, and the correlation between the structure of complexes and their spectral properties. The interplay between complex formation and other processes occurring in flavonoids during electronic excitation is also considered, such as intramolecular inter-fragment charge transfer (ICT) and intramolecular proton transfer (ESIPT). The review also contains systematic data on the study of regioselectivity and spectral properties of flavone complexes, obtained by the author and their colleagues over the past decades.
RESUMO
The simultaneous escalation in ARGs (antibiotic resistance genes) and MRGs (metal resistance genes) further complicates the intricate network of factors contributing to the proliferation of microbial resistance. Manganese, which has been reported to affect the resistance of bacteria to antibiotics and metals, plays a vital role in microbial nitrogen metabolism. Moreover, nitrifying and denitrifying populations are potential hosts for ARGs. In this study, manganese was introduced in its prevalent organic chelated form in the environment (Manganese humus chelates, Mn-HA) to a N metabolism sludge to explore the effect of manganese on MRGs and ARGs dissemination. Metagenomics results revealed that manganese availability enhances nitrogen metabolism, while a decrease in ARGs was noted which may be attributed to the inhibition of horizontal gene transfer (HGT), reflected in the reduced integrase -encoded gene int. Population analysis revealed that nitrifier and denitrifier genus harbor MRGs and ARGs, indicating that nitrifier and denitrifier are hosts of MRGs and ARGs. This raises the question of whether the prevalence of ARGs is always increased in metal-contained environments.
Assuntos
Manganês , Nitrogênio , Esgotos , Esgotos/microbiologia , Nitrogênio/metabolismo , Resistência Microbiana a Medicamentos/genética , Desnitrificação , Bactérias/metabolismo , Bactérias/genética , MetagenômicaRESUMO
The suitability of electron-rich bis-silylenes, specifically the neutral chelating [SiII(Xant)SiII] ligand (SiII=PhC(NtBu)2Si, Xant=9,9-dimethylxanthene) and the anionic [SiII(NAcrid)SiII)]- pincer ligand (NAcrid=2,7,9,9-tetramethylacridane), has been successfully probed to stabilize monovalent bis-silylene-supported aluminium complexes (aluminylenes). At first, the unprecedented aluminium(III) iodide precursors [SiII(Xant)SiII]AlI2 + I- 1 and [SiII(NAcrid)SiII)]AlI2 2 were synthesized using AlI3 and [SiII(Xant)SiII] or [SiII(NAcrid)SiII)]Li(OEt2)], respectively, and structurally characterized. While reduction of 1 with KC8 led merely to unidentified products, the dehalogenation of 2 afforded the dimer of the desired {[SiII(NAcrid)SiII)]Al:} aluminylene with a four-membered SiIV 2AlIII 2 ring. Remarkably, the proposed aluminylene intermediates [SiII(Xant)SiII]AlII and {[SiII(NAcrid)SiII)]Al:} could be produced through reaction of 1 and 2 with Collman's reagent, K2Fe(CO)4, and trapped as AlI:âFe(CO)4 complexes 5 and 6, respectively. While 6 is stable in solution, 5 loses one CO ligand in solution to afford the silylene- and aluminylene-coordinated iron(0) complex 7 from an intramolecular substitution reaction. The electronic structures of the novel compounds were investigated by Density Functional Theory calculations.
RESUMO
Rechargeable aqueous zinc-ion batteries (AZIBs) are among the most promising candidates for next-generation energy-storage devices. However, the large voltage polarisation and infamous dendrite growth hinder the practical application of AZIBs owing to their complex interfacial electrochemical environment. In this study, a hydrophobic zinc chelate-capped nano-silver (HZC-Ag) dual interphase is fabricated on the zinc anode surface using an emulsion-replacement strategy. The multifunctional HZC-Ag layer remodels the local electrochemical environment by facilitating the pre-enrichment and de-solvation of zinc ions and inducing homogeneous zinc nucleation, thus resulting in reversible dendrite-free zinc anodes. The zinc deposition mechanism on the HZC-Ag interphase is elucidated by density functional theory (DFT) calculations, dual-field simulations, and in situ synchrotron X-ray radiation imaging. The HZC-Ag@Zn anode exhibited superior dendrite-free zinc stripping/plating performance and an excellent lifespan of >2000 h with ultra-low polarisation of ≈17 mV at 0.5 mA cm-2 . Full cells coupled with a MnO2 cathode showed significant self-discharge inhibition, excellent rate performance, and improved cycling stability for >1000 cycles. Therefore, this multifunctional dual interphase may contribute to the design and development of dendrite-free anodes for high-performance aqueous metal-based batteries.
RESUMO
Recently, there has been increasing interest in the design of ligands that bind Mn2+ with high affinity and selectivity, but this remains a difficult challenge. It has been proposed that the cavity size of the binding pocket is a critical factor in most synthetic and biological examples of selective Mn2+ binding. Here, we use a bioinspired approach adapted from the hexahistidine binding site of the manganese-sequestering protein calprotectin to systematically study the effect of cavity size on Mn2+ and Zn2+ binding. We have designed a hexadentate, trisimidazole ligand whose cavity size can be tuned through peripheral modification of the steric bulk of the imidazole substituents. Conformational dynamics and redox potentials of the complexes are dependent on ligand steric bulk. Stability constants are consistent with the hypothesis that larger ligand cavities are relatively favorable for Mn2+ over Zn2+ , but this effect alone may not be sufficient to achieve Mn2+ selectivity.
RESUMO
Substituted derivatives of the DOTA framework are of general interest to alter chelate properties and facilitate the conjugation of chelates to other molecular structures. However, the scope of substituents that can be introduced into the α-position has traditionally been limited by the availability of a suitable enantiopure starting materials to facilitate a stereoselective synthesis. Tetra-substituted DOTA derivatives with phenyl and benzoate substituents in the α-position have been prepared. Initial syntheses used enantiopure starting materials but did not afford enantiopure products. This indicates that the integrity of the stereocenters was not preserved during synthesis, despite the homo-chiral diastereoisomer being the major reaction product. The homochiral diastereoisomer could be produced as the major or sole reaction product when starting from racemic or even achiral materials. Deracemization was found to occur during chelation through the formation of an enolate stabilized by the aryl substituent. This general ability of aryl groups to enable deracemization greatly increases the range of substituents that can be introduced into DOTA-type ligands with diastereochemical selectivity.
RESUMO
The target mono-BF2 complex is weakly emissive in fluid solution because radiationless decay of the excited-singlet state is promoted through an intramolecular Nâ â â H-N hydrogen bond. The lack of mirror symmetry for this compound is attributed to vibronic effects, as reported previously for the bis-BF2 complex (BOPHY). Red-shifted fluorescence is observed from single crystals, the emission quantum yield approaching 30 % with a fluorescence lifetime of 2â ns. The large Stokes shift of 5,700â cm-1 helps minimize self-absorption. Crystallography indicates that the internal fold and twist angles are increased substantially in the crystal, but the hydrogen bond is weakened relative to solution. The crystal structure is compiled from pairs of head-to-tail molecules having a shift of ca. 4.1â Å and closest approach of ca. 3.5â Å. These molecular pairs are arranged in columns, which, in turn, assemble into sheets. The proximity favors excitonic coupling between individual molecules, with the coupling strength obtained by analysis of the absorption spectrum reaching ca. 1,000â cm-1 . Both the ideal dipole approximation and the extended dipole methodology seriously overestimate the coupling strength, but the atomic transition charge density procedure leads to good agreement with experiment. Emission is attributed to the closely coupled molecular pair functioning in an excimer-like manner with the exciton trapped in a local minimum. Increasing temperature causes a slight blue shift and loss of fluorescence.
RESUMO
Two mononuclear ferric complexes are reported that respond to a pH change with a 27- and 71-fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water-hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue-less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa-dentate ligand, as well as the presence of a single pendant arm displaying a five-membered lactam or carbamate which show (perturbed) pKa values of 3.5 in the context of this N6 â ${ \Leftrightarrow }$ N5O1 coordination motif.
RESUMO
The corrosion inhibition of transition metal chelates derived from Schiff base ligands was tested for (mild, copper, stainless, aluminum and carbon) steel in various concentrations of (HCl, HNO3 and H2SO4) acidic medium at 25 °C through (weight loss, potentiodynamic polarization, polarization curves, electrochemical impedance spectroscopy (EIS) and open circuit potential measurements (OCP)) techniques. The studied compounds were identified with various spectral, analytical and physico-chemical techniques. It was observed that the investigated compounds had a significant inhibitory impact on the corrosion of diverse steels in the medium investigated. The analysis shows that increasing the dose of the studied complexes improves the corresponding inhibitory efficiency values. Negative results of Gibb's free adsorption energy (ΔGads0) prove the suppression process's spontaneous and physical adsorption, which contradicts the Langmuir adsorption isotherm. As a result of this insight, a novel bridge between nuclearity driven coordinated inorganic chemistry and materials, as well as corrosion control, has been built. This review provides an overview of the use of Schiff bases and associated transition metals as potential corrosion inhibitors, including the factors that influence their application.
Assuntos
Iminas , Aço , Adsorção , Quelantes , Corrosão , Bases de Schiff/química , Aço/químicaRESUMO
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Assuntos
Complexos de Coordenação , Metaloproteínas , Espectroscopia de Ressonância Magnética/métodos , Metais , Peptídeos/química , Metaloproteínas/metabolismo , ÍonsRESUMO
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (-110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2â¢-)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear µ-peroxo species, [(tmpa)CuII-(O22-)-MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a µ-oxo complex, [(tmpa)CuII-O-MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-µ-peroxo species, i.e., [(tmpa)CuII-(O22-)-MnIV(TPP)-(O22-)-CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = -44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.
RESUMO
The coordination chemistry of the title ligands with Mo metal centers was investigated. Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally Mo(6+) complexes of (Z)-1-R-2-(4',4'-dimethyl-2'-oxazolin-2'-yl)-eth-1-en-1-ates (L: R = -Ph, -Ph-p-NO2, -Ph-p-OMe and -t-Bu), derived from the part enols (LH), is described. The resulting air-stable MoO2L2 complexes (1-4) exist, as shown by single-crystal X-ray diffraction experiments, in the cis-dioxido-trans(N)-κ2-N,O-L conformation in the solid state for all four examples. This situation was further probed using semi-empirical PM6(tm) calculations. Complexes 1-4 represent the first Mo complexes of this ligand class and, indeed, of Group 6 metals in general. Structural and spectroscopic comparisons were made between these and related Mo(6+) compounds. Complex 1 (R = -Ph) was studied for its ability to selectively catalyze the production of poly-norbornene from the monomer in the presence of MAO. This, unfortunately, only resulted in the synthesis of insoluble, presumably highly cross-linked, polymeric and/or oligomeric materials. However, complexes 1-4 were demonstrated to be highly effective for catalyzing benzoin to benzil conversion using DMSO as the O-transfer agent. This catalysis work is likewise put into perspective with respect to analogous Mo(6+) complexes.
RESUMO
Despite its prevalence in the environment, the chemistry of the Ti4+ ion has long been relegated to organic solutions or hydrolyzed TiO2 polymorphs. A knowledge gap in stabilizing molecular Ti4+ species in aqueous environments has prevented the use of this ion for various applications such as radioimaging, design of water-compatible metal-organic frameworks (MOFs), and aqueous-phase catalysis applications. Herein, we show a thorough thermodynamic screening of bidentate chelators with Ti4+ in aqueous solution, as well as computational and structural analyses of key compounds. In addition, the hexadentate analogues of catechol (benzene-1,2-diol) and deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone), TREN-CAM and THPMe respectively, were assessed for chelation of the 45 Ti isotope (t1/2 =3.08â h, ß+ =85 %, Eß+ =439â keV) towards positron emission tomography (PET) imaging applications. Both were found to have excellent capacity for kit-formulation, and [45 Ti]Ti-TREN-CAM was found to have remarkable stability in vivo.
Assuntos
Compostos Organometálicos , Titânio , Catálise , Quelantes , Hidrólise , Compostos Organometálicos/química , Titânio/química , Água/químicaRESUMO
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas/genética , Enxofre/metabolismo , Triticum/genética , Cruzamento , Grão Comestível , Fenótipo , Sementes/genética , Sementes/fisiologia , Triticum/fisiologiaRESUMO
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4'-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.
Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ouro/farmacologia , Humanos , Compostos Organoáuricos/farmacologia , Tiorredoxina Dissulfeto RedutaseRESUMO
In vitro Cu(Aß1-x )-induced ROS production has been extensively studied. Conversely, the ability of N-truncated isoforms of Aß to alter the Cu-induced ROS production has been overlooked, even though they are main constituents of amyloid plaques found in the human brain. N-Truncated peptides at the positions 4 and 11 (Aß4-x and Aß11-x ) contain an amino-terminal copper and nickel (ATCUN) binding motif (H2 N-Xxx-Zzz-His) that confer them different coordination sites and higher affinities for CuII compared to the Aß1-x peptide. It has further been proposed that the role of Aß4-x peptide is to quench CuII toxicity in the brain. However, the role of CuI coordination has not been investigated to date. In contrast to CuII , CuI coordination is expected to be the same for N-truncated and N-intact peptides. Herein, we report in-depth characterizations and ROS production studies of Cu (CuI and CuII ) complexes of the Aß4-16 and Aß11-16 N-truncated peptides. Our findings show that the N-truncated peptides do produce ROS when CuI is present in the medium, albeit to a lesser extent than the unmodified counterpart. In addition, when used as competitor ligands (i.e., in the presence of Aß1-16 ), the N-truncated peptides are not able to fully preclude Cu(Aß1-16 )-induced ROS production.
Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Fragmentos de Peptídeos/química , Espécies Reativas de Oxigênio/química , Humanos , Placa Amiloide/complicaçõesRESUMO
A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift. Orange fluorescence is also observed for this compound as a cast film. Temperature-dependence studies show that decay of the fluorescent state is weakly activated but emission is less than quantitative at 77â K. Quite rare for boron(III)-based chelates, this derivative undergoes intersystem crossing to form a meta-stable triplet-excited state. X-ray crystal structures are reported for both compounds, along with simulated ECD spectra.