Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Angew Chem Int Ed Engl ; 62(13): e202218799, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719175

RESUMO

Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip-molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.

2.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500855

RESUMO

Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au-S bond and partially stabilized by the Au⋅⋅⋅H-N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H-S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N-H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H-S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.

3.
Molecules ; 25(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635240

RESUMO

Naftifine is used to treat fungal skin infections as it inhibits dermatophytes, which are the cause of onychomycosis. However, naftifine's ability to permeate the human nail barrier has not been investigated, thus, the antimycotic potential is not clearly established. This work aims to evaluate the effect of penetration enhancing factors on the accumulation of naftifine hydrochloride through human nail clippings. Naftifine polymeric nail lacquers with Eudragit RL100 were developed as a suitable delivery system. Low penetration of naftifine into nail has been determined as less than 10% of applied drug dose accumulated in the nail layers. Incorporation of thioglycolic acid into formulations resulted in increased accumulation of antifungal agent in the nail layers by 100% compared with a control group. Salicylic acid did not effect naftifine accumulation in the human nail. The permeation of naftifine through the nail increased by threefold when the thioglycolic acid-containing formulation was applied and the nail was pretreated with a fractional CO2 laser. Structural changes of the nail barrier, induced by fractional CO2 laser, were visualized by microscopy. The results suggest, that naftifine nail penetration could be significantly increased when physical and chemical enhancing factors are applied.


Assuntos
Alilamina/análogos & derivados , Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Casco e Garras/efeitos dos fármacos , Unhas/efeitos dos fármacos , Onicomicose/tratamento farmacológico , Administração Tópica , Adulto , Alilamina/administração & dosagem , Alilamina/farmacocinética , Animais , Antifúngicos/farmacocinética , Bovinos , Feminino , Casco e Garras/metabolismo , Humanos , Laca , Masculino , Pessoa de Meia-Idade , Unhas/metabolismo , Onicomicose/metabolismo , Distribuição Tecidual
4.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731377

RESUMO

Surface-enhanced Raman scattering (SERS) is a widely used technique for drug detection due to high sensitivity and molecular specificity. The applicability and selectivity of SERS in the detection of specific drug molecules can be improved by gathering information on the specific interactions occurring between the molecule and the metal surface. In this work, multilayer gold-silver bimetallic nanorods (Au@Ag@AuNRs) have been prepared and used as platforms for SERS detection of specific drugs (namely promethazine, piroxicam, furosemide and diclofenac). The analysis of SERS spectra provided accurate information on the molecular location upon binding and gave some insight into molecule-surface interactions and selectivity in drug detection through SERS.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Preparações Farmacêuticas/análise , Prata/química , Análise Espectral Raman
5.
Molecules ; 24(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817901

RESUMO

Surface-enhanced IR absorption (SEIRA) microscopy was used to reveal main chemical and physical interactions between Staphylococcus aureus bacteria and different laser-nanostructured bactericidal Si surfaces via simultaneous chemical enhancement of the corresponding IR-absorption in the intact functional chemical groups. A cleaner, less passivated surface of Si nanoripples, laser-patterned in water, exhibits much stronger enhancement of SEIRA signals compared to the bare Si wafer, the surface coating of oxidized Si nanoparticles and oxidized/carbonized Si (nano) ripples, laser-patterned in air and water. Additional very strong bands emerge in the SEIRA spectra on the clean Si nanoripples, indicating the potential chemical modifications in the bacterial membrane and nucleic acids during the bactericidal effect.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Silício/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Humanos , Nanoestruturas/química , Silício/química , Staphylococcus aureus/patogenicidade , Propriedades de Superfície/efeitos dos fármacos , Tensoativos/química , Tensoativos/farmacologia
6.
Small ; 14(8)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29239098

RESUMO

Semiconductor-based surface enhanced Raman scattering (SERS) has attracted great attention due to its excellent spectral reproducibility, high uniformity, and good anti-interference ability. However, its relatively low SERS sensitivity still hinders its further developments in both performance and applications. Since the SERS is a peculiar surface effect, investigating the facet-dependent SERS activity of semiconductor nanostructures is crucial to boost their SERS signals. Although the semiconductor facet-dependent SERS effect is predicted via numerical calculations, convincing experimental evidence is scarce due to complicated and undefined surface conditions. In this work, three facet-defined ({100}, {110}, and {111} facets) Cu2 O microcrystals (MCs) with clear surface atomic configuration are utilized to investigate the facet-dependent SERS effect. The results from the Kelvin probe force microscopy measurements on single Cu2 O polyhedron, demonstrate that the facet-dependent work function plays a crucial role in the interfacial charge transfer process. Comparing with the {110} and {111} facets, the {100} facet possesses the lowest electronic work function, which enables more efficient interfacial charge transfer. The simulation results further confirm that the {100}-facets can transfer the most electrons from Cu2 O MCs to molecules due to its lowest facet work function, resulting in the largest increment of the molecular polarization.

7.
Mikrochim Acta ; 185(4): 242, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29610992

RESUMO

An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10-9 mol·L-1. Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).

8.
Angew Chem Int Ed Engl ; 56(33): 9851-9855, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28651039

RESUMO

Enhancement of the semiconductor-molecule interaction, in particular, promoting the interfacial charge transfer process (ICTP), is key to improving the sensitivity of semiconductor-based surface enhanced Raman scattering (SERS). Herein, by developing amorphous ZnO nanocages (a-ZnO NCs), we successfully obtained an ultrahigh enhancement factor of up to 6.62×105 . This remarkable SERS sensitivity can be attributed to high-efficiency ICTP within a-ZnO NC molecule system, which is caused by metastable electronic states of a-ZnO NCs. First-principles density functional theory (DFT) simulations further confirmed a stronger ICTP in a-ZnO NCs than in their crystalline counterparts. The efficient ICTP can even generate π bonding in Zn-S bonds peculiar to the mercapto molecule adsorbed a-ZnO NCs, which has been verified through the X-ray absorption near-edge structure (XANES) characterization. To the best of our knowledge, this is the first time such remarkable SERS activity has been observed within amorphous semiconductor nanomaterials, which could open a new frontier for developing highly sensitive and stable SERS technology.

9.
Nano Lett ; 15(5): 2892-901, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25821897

RESUMO

Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphene's Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further experimentally supported by the change of the UV-visible absorption spectra of molecules when in contact with graphene and these conclusions are theoretically corroborated by first-principles calculations. These research findings are important for gaining fundamental insights into the graphene-molecule interaction and the chemical mechanism in Raman enhancement, as well as for advancing the role of such understanding both in guiding chemical and molecule detection applications and in medical and biological technology developments.

10.
ACS Appl Mater Interfaces ; 16(9): 12085-12094, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385172

RESUMO

Actively controlling surface-enhanced Raman scattering (SERS) performance plays a vital role in highly sensitive detection or in situ monitoring. Nevertheless, it is still challenging to achieve further modulation of electromagnetic enhancement and chemical enhancement simultaneously in SERS detection. In this study, a silver nanocavity structure with graphene as a spacer layer is coupled with thermoelectric semiconductor P-type gallium nitride (GaN) to form an electric-field-induced SERS (E-SERS) for dual enhancement. After applying the electric field, the intensity of SERS signals is further enhanced by over 10 times. The thermoelectric field enables fast and reproducible doping of graphene, thereby modulating its Fermi level over a wide range. The thermoelectric field also regulates the position of the plasmon resonance peak of the silver nanocavity structure, rendering synchronous dual electromagnetic and chemical regulation. Additionally, the method enables the trace detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A detailed theoretical analysis is performed based on the experimental results and finite-element calculations, paving the way for the fabrication of high-efficient E-SERS substrates.

11.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607101

RESUMO

Surface-enhanced Raman scattering (SERS), as one of the most powerful analytical methods, undertakes important inspection tasks in various fields. Generally, the performance of an SERS-active substrate relies heavily on its structure, which makes it difficult to integrate multiple-functional detectability on the same substrate. To address this problem, here we designed and constructed a film of graphene/Au nanoparticles (G/Au film) through a simple method, which can be conveniently transferred to different substrates to form various composite SERS substrates subsequently. By means of the combination of the electromagnetic enhancement mechanism (EM) and the chemical enhancement mechanism (CM) of this structure, the film realized good SERS performance experimentally, with the enhancement factor (EF) approaching ca. 1.40 × 105. In addition, the G/Au film had high mechanical strength and had large specific surface area and good biocompatibility that is beneficial for Raman detection. By further transferring the film to an Ag/Si composite substrate and PDMS flexible film, it showed enhanced sensitivity and in situ detectability, respectively, indicating high compatibility and promising prospect in Raman detection.

12.
J Colloid Interface Sci ; 678(Pt A): 532-539, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39214005

RESUMO

A comprehensive understanding of the enhancement mechanism of the substrate material is crucial to ensure the repeatability and functionality of SERS detection technology. Therefore, this study introduces a theoretical analysis method that integrates electromagnetic and chemical enhancement to achieve a comprehensive understanding of the SERS effect on the magnetic composite substrate. The visual model is employed in this study to comprehensively analyze and illustrate the electric field enhancement and optical effects of composite substrate materials. The study also elucidated the adsorption and charge transfer between the substrate material and target molecules. Based on this theory, Fe3O4@GO@Ag material was prepared and used to detect hydrophobic organic molecules such as polycyclic aromatic hydrocarbons (PAHs), with a concentration as low as 0.5 nM. This study comprehensively analyzed the SERS enhancement effect of the composite substrate for the first time, and prepared a magnetic composite substrate material for the detection of hydrophobic organic molecules, opening up a new avenue for theoretical guidance and experimental exploration in SERS detection and analysis.

13.
ACS Appl Mater Interfaces ; 16(35): 45888-45900, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163649

RESUMO

Photoinduced enhanced Raman spectroscopy (PIERS) has emerged as an efficient technique for enhancing the vibrational modes of analyte molecules adsorbed on a plasmonic nanoparticle-semiconductor hybrid material through chemical enhancement governed by electron transfer from the semiconductor to the plasmonic nanoparticles under an additional ultraviolet (UV) preirradiation step. The increase in chemical enhancement is imperative in analyzing and detecting pharmaceutically important moieties, such as amino acids and proteins, with a low Raman scattering cross section, even in complex biological environments. Herein, we demonstrate that UV preirradiation induced the creation of additional oxygen vacancies by introducing a low concentration (≈1%) of Ni as a dopant in the 2D platelike morphology of the BiOCl semiconductor; i.e., defect states in the semiconductor can induce charge transfer from the semiconductor to the plasmonic nanoparticles. This phenomenon facilitates electron transfer to the adsorbed analyte on the plasmonic surface. Additionally, we have shown the usefulness of this method in protein immobilization on the substrate surface, followed by the identification of a specific protein in the mixture of proteins. Proteins containing cysteine residues capture these electrons to form a surface-bound thiol group via a transient disulfide electron adduct radical. This allows differential binding of the protein molecules to the semiconductor plasmonic hybrid depending on the concentration of surface cysteine residues in proteins. Through PIERS and principal component analysis, we demonstrate the possibility of probing and distinguishing biomolecules based on their surface composition and secondary structure components even in their mixtures, thus paving the way for efficient analysis of complex biological systems.


Assuntos
Semicondutores , Análise Espectral Raman , Transporte de Elétrons , Raios Ultravioleta , Propriedades de Superfície , Proteínas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Adsorção
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122971, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295203

RESUMO

Surface enhanced Raman scattering (SERS) is a rapid and non-destructive spectral detection technique, and has been widely implemented on trace-level molecule detection. In this work, a hybrid SERS substrate constructed by porous carbon film and silver nanoparticles (PCs/Ag NPs) was developed and then used for imatinib (IMT) detection in bio-environment. The PCs/Ag NPs was prepared by direct carbonizing the gelatin-AgNO3 film in the air atmosphere, and an enhancement factor (EF) of 106 was achieved with R6G as the Raman reporter. Hereafter, this SERS substrate was used as the label-free sensing platform to detect the IMT in the serum, and the experimental results indicate that the substrate is conducive to eliminating the interference from the complex biological molecules in the serum, and the characteristic Raman peaks belonging to IMT (10-4 M) are accurately resolved. Furthermore, the SERS substrate was used to trace the IMT in the whole blood, the trace of ultra-low concertation of IMT is rapidly discovered without any pretreatment. Thus, this work finally suggests that the proposed sensing platform provides a rapid and reliable method for IMT detection in the bio-environment and offers a potential for its application in therapeutic drug monitoring.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Mesilato de Imatinib , Prata/química , Porosidade , Carbono , Análise Espectral Raman/métodos
15.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671937

RESUMO

Two-dimensional nanostructures (2DNS) attract tremendous interest and have emerged as potential materials for a variety of applications, including biomolecule sensing, due to their high surface-to-volume ratio, tuneable optical and electronic properties. Advancements in the engineering of 2DNS and associated technologies have opened up new opportunities. Surface-enhanced Raman scattering (SERS) is a rapid, highly sensitive, non-destructive analytical technique with exceptional signal amplification potential. Several structurally and chemically engineered 2DNS with added advantages (e.g., π-π* interaction), over plasmonic SERS substrates, have been developed specifically towards biomolecule sensing in a complex matrix, such as biological fluids. This review focuses on the recent developments of 2DNS-SERS substrates for biomolecule sensor applications. The recent advancements in engineered 2DNS, particularly for SERS substrates, have been systematically surveyed. In SERS substrates, 2DNS are used as either a standalone signal enhancer or as support for the dispersion of plasmonic nanostructures. The current challenges and future opportunities in this synergetic combination have also been discussed. Given the prospects in the design and preparation of newer 2DNS, this review can give a critical view on the current status, challenges and opportunities to extrapolate their applications in biomolecule detection.


Assuntos
Nanoestruturas , Nanoestruturas/química , Análise Espectral Raman/métodos , Tecnologia
16.
J Forensic Sci ; 68(2): 655-666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36732861

RESUMO

Blood-contaminated shoeprints and footmarks contain valuable operational information as they may bind an individual who stepped in the crime scene with the incident and not merely with the location. As determining the age of a bloodstain remains a challenge, while processing the scene, it is difficult to determine whether the blood is completely, or partially, dry. Thus, executing a dye staining protocol may wash these marks away as they might still be soluble. However, to meet this challenge, it is possible to fix blood marks using heat. This study aims to find a solution for floor surfaces covered by heavier blood traces (shoeprints and footmarks). For this purpose, a new pseudo-operating device was constructed for examining the blood-fixing process of both mentioned trace types. Two trials were performed with depletion marks. The results revealed that fully developed fresh and heavily blood deposits were obtained by heating to 200°C for 7.5 min using the fixing device, followed by a staining protocol using amido black solution. The achieved sharp resolution of the examined bloody prints demonstrates that in certain cases the dehydration mechanism of heating is preferred over precipitating the proteins attributed to 5-sulfosalycilic acid; thus, reducing the risk of washing blood evidence while processing the crime scene.


Assuntos
Manchas de Sangue , Temperatura Alta , Coloração e Rotulagem
17.
Front Chem ; 11: 1183381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090249

RESUMO

The application of two-dimensional (2D) materials, including metallic graphene, semiconducting transition metal dichalcogenides, and insulating hexagonal boron nitride (h-BN) for surface-enhancement Raman spectroscopy has attracted extensive research interest. This article provides a critical overview of the recent developments in surface-enhanced Raman spectroscopy using 2D materials. By re-examining the relationship between the lattice structure and Raman enhancement characteristics, including vibration selectivity and thickness dependence, we highlight the important role of dipoles in the chemical enhancement of 2D materials.

18.
Chemosphere ; 320: 138081, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758819

RESUMO

This work reports a sensitive SERS substrate based on graphene oxide (GO) and quantum-sized ZrO2 nanoparticles (GO/ZrO2) for label-free determination of the organophosphate pesticide methyl parathion (MP). The enhanced light-matter interactions and the consequent SERS effect in these substrates resulted from the effective charge transfer (CT) mechanism attributed to synergistic contributions of three main factors: i) the strong molecular adherence of the MP molecules and the ZrO2 surface which allows the first layer-effect, ii) the relatively abundant surface defects in low dimensional ZrO2 semiconductor NPs, which act as intermediate electronic states that reduce the large bandgap barrier, and iii) the hindered charge recombination derived from the transference of the photoinduced holes to the GO layer. This mechanism allowed an enhancement factor of 8.78 × 104 for GO/ZrO2-based substrates, which is more than 5-fold higher than the enhancement observed for platforms without GO. A detection limit of 0.12 µM was achieved with an outstanding repeatability (variation ≤4.5%) and a linear range up to 10 µM, which is sensitive enough to determine the maximal MP concentration permissible in drinking water according to international regulations. Furthermore, recovery rates between 97.4 and 102.1% were determined in irrigation water runoffs, strawberry and black tea extracts, demonstrating the reliability of the hybrid GO/ZrO2 substrate for the organophosphate pesticides quantification in samples related to agri-food sectors and environmental monitoring.


Assuntos
Grafite , Inseticidas , Nanopartículas Metálicas , Metil Paration , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Grafite/química
19.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079945

RESUMO

The surface-enhanced Raman scattering (SERS) spectra of piperidine adsorbed on silver/chloride colloids were studied by a combined density functional theory (DFT)/time dependent DFT (TD-DFT) approach. The mechanism of chemical enhancement on the Raman signals is due to at least two contributions: the first comes from the changes in the molecular force constants and the dynamic polarizabilities of the normal modes, when the molecule is chemisorbed. DFT calculations satisfactorily reproduce the SERS spectra of piperidine adsorbed on silver, showing that the species formed on the silver particle is a complex formed by a deprotonated piperidine linked to a silver cation. A second contribution to the SERS chemical enhancement is due to a resonance Raman effect occurring when the wavelength of the Raman excitation falls within the electronic excitation band of the molecule/metal complex. Actually, the SERS spectra of piperidine show a significant dependence on the wavelength of the laser excitation, with a marked enhancement in the green-light region. TD-DFT calculations on the most-probable complex explain this behavior, because a strong excitation band of the complex is calculated in the green spectral region. This pinpoints that a resonance between the exciting radiation and the absorption band of this complex is responsible for this enhancement effect.

20.
Water Res ; 204: 117564, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455157

RESUMO

CO2 exchanges across the water-air interface in rivers and lakes are currently believed to be responsible for the dominant share of global aquatic CO2 emissions. The gas transfer velocity (k600) is the key factor that constrains the CO2 fluxes. It is also the most problematic to establish because of its high spatial and temporal variability. Here, we have evaluated the seasonal and spatial dynamics in k600 values and their physical and chemical controlling processes by gas tracer and floating chamber (FC) methods in three reaches of a low-gradient stream channel (Guancun surface stream, 'GSS') in a karst terrain in subtropical southwestern China in December 2016 and March, July and September 2017. The k600 values were highly variable in space and time in this small stream. Physical processes, including the velocity of the stream and its slope, were found to control the variations of k600. The k600 values recorded in the dry season (March and December) were at minimal levels due to very slow flow and gentle slope, and were also affected by complexation in the solute-enriched waters. The characteristics high pH and low turbulence of gentle streams in carbonate karst areas are conducive to such complexation, which is of great significance in the limiting CO2 degassing in such regions. We have obtained the first k600 prediction model for small streams in subtropical karst regions. In conclusion, we present a comprehensive approach for predicting the k600 values in small channels by comparison of independent SF6 gas tracer and floating chamber methods.


Assuntos
Dióxido de Carbono , Rios , Dióxido de Carbono/análise , Carbonatos , Monitoramento Ambiental , Lagos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa