Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Bioessays ; 45(7): e2200248, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147790

RESUMO

A single protein molecule with one or more cysteine residues can occupy a plurality of unique residue and oxidation-chemotype specified proteoforms that I term oxiforms. In binary reduced or oxidised terms, one molecule with three cysteines will adopt one of eight unique oxiforms. Residue-defined sulfur chemistry endows specific oxiforms with distinct functionally-relevant biophysical properties (e.g., steric effects). Their emergent complexity means a functionally-relevant effect may only manifest when multiple cysteines are oxidised. Like how mixing colours makes new shades, combining discrete redox chemistries-colours-can create a kaleidoscope of oxiform hues. The sheer diversity of oxiforms co-existing within the human body provides a biological basis for redox heterogeneity. Of evolutionary significance, oxiforms may enable individual cells to mount a broad spectrum of responses to the same stimulus. Their biological significance, however plausible, is speculative because protein-specific oxiforms remain essentially unexplored. Excitingly, pioneering new techniques can push the field into uncharted territory by quantifying oxiforms. The oxiform concept can advance our understanding of redox-regulation in health and disease.


Assuntos
Cisteína , Proteínas , Humanos , Cisteína/química , Cisteína/metabolismo , Cor , Proteínas/metabolismo , Oxirredução
2.
BMC Genomics ; 25(1): 237, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438980

RESUMO

BACKGROUND: Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS: GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS: Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, ß-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.


Assuntos
Cimenos , Ácido Mevalônico , Óleos Voláteis , Humanos , Fosfatos , Timol , Genótipo , Compostos Fitoquímicos , RNA-Seq , Terpenos , Expressão Gênica
3.
Planta ; 260(1): 3, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767800

RESUMO

MAIN CONCLUSION: Transcription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( -)-menthol and ( -)-menthone. Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( -)-menthol and ( -)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( -)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.


Assuntos
Regulação da Expressão Gênica de Plantas , Mentha , Mentol , Monoterpenos , Proteínas de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mentha/genética , Mentha/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mentol/metabolismo , Óleos Voláteis/metabolismo , Vias Biossintéticas/genética , Regiões Promotoras Genéticas/genética
4.
Plant J ; 110(5): 1516-1528, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322494

RESUMO

Sustainable production of chemicals and improving these biosources by engineering metabolic pathways to create efficient plant-based biofactories relies on the knowledge of available chemical/biosynthetic diversity present in the plant. Nicotiana species are well known for their amenability towards transformation and other new plant breeding techniques. The genus Nicotiana is primarily known through Nicotiana tabacum L., the source of tobacco leaves and all respective tobacco products. Due to the prevalence of the latter, N. tabacum and related Nicotiana species are one of the most extensively studied plants. The majority of studies focused solely on N. tabacum or other individual species for chemotyping. The present study analysed a diversity panel including 17 Nicotiana species and six accessions of Nicotiana benthamiana and created a data set that effectively represents the chemotype core collection of the genus Nicotiana. The utilisation of several analytical platforms and previously published libraries/databases enabled the identification and measurement of over 360 metabolites of a wide range of chemical classes as well as thousands of unknowns with dedicated spectral and chromatographic properties.


Assuntos
Nicotiana , Melhoramento Vegetal , Redes e Vias Metabólicas , Nicotiana/genética , Nicotiana/metabolismo
5.
New Phytol ; 240(5): 1944-1960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737003

RESUMO

Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.


Assuntos
Melaleuca , Melaleuca/genética , Melaleuca/química , Árvores/genética , Estudo de Associação Genômica Ampla , Terpenos/química , Chá
6.
J Chem Ecol ; 49(1-2): 36-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36705801

RESUMO

Cuticular hydrocarbons (CHCs) are major constituents of the cuticular lipid layer of insects. They serve not only as a barrier to desiccation, but often additionally mediate communication at close range. The compositions of the CHC profiles, i.e., the specific compounds and their relative amounts, usually differ between species. Additional intraspecific variability can be found between different populations, between colonies and castes of social insects, and between the sexes. Thus, such groups can often be distinguished based on distinctive compounds and/or specific compound ratios. The CHC profile may further be influenced by biotic and abiotic factors, which therefore can impact, e.g., nestmate recognition or mate choice. However, consistent intrasexual variation seems to be rare. Here, we investigated a case of intrasexual CHC variability within a single population of a parasitoid wasp. While wasps of both sexes produced the same set of compounds, the relative amounts of specific compound classes revealed the presence of intrasexual chemical phenotypes. This is, to our knowledge, the first report of three distinct female CHC profile patterns within a population of a solitary insect that uses CHCs for mate recognition. Additionally, male CHC profiles, while overall very similar, could be separated into two chemotypes by multivariate analysis. The study of species exhibiting such intraspecific and intrasexual CHC variation will advance our understanding of the effects of CHC variability on both, desiccation resistance and intraspecific communication.


Assuntos
Vespas , Animais , Masculino , Feminino , Vespas/química , Hidrocarbonetos/química , Insetos , Análise Multivariada , Fenótipo
7.
Chem Biodivers ; 20(5): e202300002, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37084277

RESUMO

The aim of present work was to study the essential oil chemical composition and antimicrobial activity of cultivated Mentha pulegium L. under different plant growth promoting rhizobacteria (Pseudomonas fluorescens, Bradyrhizobium sp. and Sinorhizobium meliloti) individually and in consortium. Yield, in plants inoculated with Bradyrhizobium sp. and S. meliloti in consortium, increase significantly relative to control plants. GC and GC/MS analyses pointed to a qualitative and quantitative variability of components. The investigated essential oils were clustered into three chemotypes: piperitenone/1,8-cineol (40.9/29.4 %) chemotype in plants inoculated with Bradyrhizobium sp. individually, S. meliloti individually, and Bradyrhizobium sp. and S. meliloti in consortium, piperitone/menthone (41.8/33.8 %) chemotype in plants inoculated with P. fluorescens individually, P. fluorescens and Bradyrhizobium sp. in consortium, and P. fluorescens and S. meliloti in consortium and pulegone/menthol (47.9/31.5 %) chemotype in control plants. The antimicrobial activity, carried out by the disc diffusion method and the determination of the Minimum Inhibitory Concentration (MIC) against ten microorganisms, varied significantly according to the tested microorganism and the rhizobacterial species used individually or in consortium (inhibition zone: 8.5-33.5 mm; MIC: 0.25-2.5 µL/mL). Our findings provided useful indications to select interesting chemotype within M. pulegium, especially in perspective of its cultivation.


Assuntos
Anti-Infecciosos , Mentha pulegium , Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha pulegium/química , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Mentha/química
8.
Plant Dis ; 107(9): 2687-2700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774561

RESUMO

In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Humanos , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Canadá
9.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298915

RESUMO

The chemical compositions of eleven wild species of aromatic and medicinal plants indigenous to Algeria, including Thymus, Mentha, Rosmarinus, Lavandula, and Eucalyptus, were analyzed. The identification of the chemical composition of each oil was conducted using GC-FID and GC-MS capillary gas chromatography. The study investigated the chemical variability of the essential oils based on several parameters. These included the impact of the vegetative cycle on oil composition, variations among subspecies of the same species, variations among species within the same genus, the influence of environmental factors on composition variations within a species, chemo typing, and the genetic factors (such as hybridization) contributing to chemical variability. The concepts of chemotaxonomy, chemotype, and chemical markers were examined to understand their limitations and emphasize the importance of regulating the use of essential oils derived from wild plants. The study advocates for an approach that involves the domestication of wild plants and screening their chemical compositions according to more specific standards for each commercially available oil. Lastly, the nutritional implications and the variability of nutritional impact based on the chemical composition of the essential oils will be discussed.


Assuntos
Óleos Voláteis , Plantas Medicinais , Óleos Voláteis/química , Óleos de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Gasosa
10.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770797

RESUMO

Artemisia annua L. is distributed throughout the world and it is an important medicinal plant in Korea to treat various human diseases. Recently, A. annua has also been considered to be an effective ethnobotanical drug against COVID-19. A. annua contains an appreciable amount of essential oil with different biological properties. However, the composition of essential oils in aromatic plants can be varied depending on several factors, including geographic, genetic, ecological, etc. Hence, the present study aimed to investigate the chemical diversity of essential oils of Korean A. annua collected from different locations in Korea by multivariate analysis. For this purpose, the seeds of A. annua were collected from 112 different locations in Korea and were grown under the same environmental conditions. Except for nine individuals which decayed during the cultivation, essential oils were isolated from the aerial parts of 103 A. annua individuals (AEOs) using the steam distillation extraction method, and their chemical compositions were determined by GC-MS analysis. Furthermore, a multivariate analysis was performed to distinguish the difference between 103 individuals of A. annua based on their essential oil compositions. The yield of A. annua essential oils ranged from 0.04 to 1.09% (v/w). Based on the GC-MS data, A. annua individuals were grouped into six chemotypes such as artemisia ketone, camphor, ß-cubebene, eucalyptol, α-pinene, and ß-selinene. The multivariate analysis results revealed that Korean A. annua could be largely grouped into three clusters such as artemisia ketone, eucalyptol, and ß-selinene. Among 35 components selected for principal component analysis (PCA), PC1, PC2, and PC3 accounted for 82.55%, 8.74%, and 3.62%, respectively. Although all individuals of A. annua were cultivated under the same environmental conditions, there is an intraspecific chemical diversity that exists within Korean native species.


Assuntos
Artemisia annua , Artemisia , COVID-19 , Óleos Voláteis , Humanos , Óleos Voláteis/química , Artemisia annua/química , Eucaliptol/análise , Análise Multivariada , República da Coreia , Artemisia/química
11.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282859

RESUMO

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Assuntos
Alquil e Aril Transferases , Cinnamomum camphora , Cinnamomum camphora/enzimologia , Alquil e Aril Transferases/química
12.
Phytochem Rev ; 21(3): 879-913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366748

RESUMO

Ocimum species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by Ocimum species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various Ocimum species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the Ocimum species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many Ocimum species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe. Ocimum basilicum L. has been the most widespread and well-studied species, followed by O. gratissimum L., O. tenuiflorum L., O. canum Sims, O. americanum and O. kilimandscharicum Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous Ocimum species. Consequently, chemical characterization of the essential oil obtained from Ocimum species has become indispensable for its proper utilization. The present chemodiversity knowledge from Ocimum species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-021-09767-z.

13.
J Chem Ecol ; 48(9-10): 730-745, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35984547

RESUMO

Plants produce a diversity of secondary metabolites including volatile organic compounds. Some species show discrete variation in these volatile compounds such that individuals within a population can be grouped into distinct chemotypes. A few studies reported that volatile-mediated induced resistance is more effective between plants belonging to the same chemotype and that chemotypes are heritable. The authors concluded that the ability of plants to differentially respond to cues from related individuals that share the same chemotype is a form of kin recognition. These studies assumed plants were actively responding but did not test the mechanism of resistance. A similar result was possible through the passive adsorption and reemission of repellent or toxic VOCs by plants exposed to damage-induced plant volatiles (DIPVs). Here we conducted exposure experiments with five chemotypes of sagebrush in growth chambers; undamaged receiver plants were exposed to either filtered air or DIPVs from mechanically wounded branches. Receiver plants exposed to DIPVs experienced less herbivore damage, which was correlated with increased expression of genes involved in plant defense as well as increased emission of repellent VOCs. Plants belonging to two of the five chemotypes exhibited stronger resistance when exposed to DIPVs from plants of the same chemotypes compared to when DIPVs were from plants of a different chemotype. Moreover, some plants passively absorbed DIPVs and reemitted them, potentially conferring associational resistance. These findings support previous work demonstrating that sagebrush plants actively responded to alarm cues and that the strength of their response was dependent on the chemotypes of the plants involved. This study provides further support for kin recognition in plants but also identified volatile-mediated associational resistance as a passively acquired additional defense mechanism in sagebrush.


Assuntos
Artemisia , Compostos Orgânicos Voláteis , Humanos , Artemisia/fisiologia , Herbivoria/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Plantas/metabolismo
14.
Chem Biodivers ; 19(9): e202200448, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35981267

RESUMO

Magnolia grandiflora is an aromatic plant widely distributed around the world. In Colombia, and more specifically in Bogotá, M. grandiflora has been introduced as part of urban forestry programs, and their specimens are therefore subjected to several environments. Nevertheless, there are no previous studies on the chemical composition of such plants. Hence, the characterization of the essential oil from 20 specimens of M. grandiflora from Bogotá, Colombia, by GC/MS was carried out here. Two different chemotypes were found. While one was characterized by monoterpenes α-pinene, ß-pinene, and limonene, the other contained mainly sesquiterpenes ß-elemene, bicyclogermacrene, and germacrene D. Multivariate statistical analyses confirmed their existence and helped to identify variations within and between chemotypes. Furthermore, differential expression of genes encoding the terpene synthases Mg25 and Mg17 could arguably be responsible for the characteristic compositions of both chemotypes, as suggested by rational biosynthetic analysis of the most contrasting metabolites.


Assuntos
Magnolia , Óleos Voláteis , Sesquiterpenos , Colômbia , Agricultura Florestal , Limoneno/análise , Magnolia/química , Monoterpenos/análise , Óleos Voláteis/química , Folhas de Planta/química , Sesquiterpenos/análise , Árvores
15.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234832

RESUMO

Heracleum persicum Desf. ex Fischer seeds are a rich source of essential oils (EOs) with high antimicrobial and antioxidant effects. In order to determine the phytochemical variability in various Iranian H. persicum populations, seed samples were collected from 10 different climatic locations. The current study indicated that hexyl butyrate (20.9-44.7%), octyl acetate (11.2-20.3%), hexyl-2-methylbutyrate (4.81-8.64%), and octyl 2-methyl butyrate (3.41-8.91%) were the major components of the EOs. The maximum (44.7%) and the minimum (20.9%) content of hexyl butyrate were obtained from Kaleibar and Sari populations, respectively. Moreover, the octyl acetate content ranged from 2% (in Mahdasht) to 20.3% in Torghabeh population. The CA and PCA analysis divided the 10 Iranian H. persicum populations into three major groups. Populations from Khanghah, Kaleibar, Shebeilo, Showt, Mahdasht, and Amin Abbad showed a distinct separation in comparison with the other populations, having high contents of hexyl butyrate (39.8%) and low contents of octyl acetate (13.5%) (Chemotype II). According to correlation analysis, the highest correlation coefficient was among habitat elevation and hexyl butyrate content. In addition, the mean annual precipitation was negatively correlated with the content of hexyl butyrate. Although octyl acetate content showed high correlation with soil EC and mean annual temperature, it was not statistically significant. In general, in order to have plants with a high content of hexyl butyrate, it is recommended to harvest these plants from regions with high altitude and low rainfall such as Kaleibar.


Assuntos
Anti-Infecciosos , Heracleum , Óleos Voláteis , Acetatos , Antioxidantes , Butiratos , Heracleum/química , Irã (Geográfico) , Óleos Voláteis/química , Solo
16.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566129

RESUMO

Ocimum campechianum Mill. (Peruvian basil) is an essential oil-bearing plant of the Lamiaceae family. Volatile oil produced through steam distillation of Peruvian basil was examined to establish the aromatic and stable isotope profiles of samples (n = 9) from three different cultivated plots in Peru. The resulting essential oils were analyzed by GC/FID, GC/MS, and GC/IRMS. In accordance with findings from other researchers, multiple chemotypes, defined by the most abundant aromatic compounds, exist within these populations. Overall, 55% of samples are the eugenol chemotype (values ranging 15.4-30.2%), 33% are the methyl eugenol chemotype (values ranging 68.1-68.7%), and a single sample is a mixture of both chemotypes, containing high levels of both eugenol (38.1%) and methyl eugenol (8.6%). Stable isotope ratios, δ2H and δ13C, performed on prominent compounds provide supporting data for distinguishing chemotypes. Complete aromatic profiles, stable isotope ratios, and essential oil yield are established for each sample. This study confirms the existence of multiple chemotypes and, for the first time, to the author's best knowledge, establishes stable isotope ratios for O. campechianum essential oil, which proves a useful tool in further investigating plant metabolism and determining essential oil authenticity.


Assuntos
Lamiaceae , Ocimum basilicum , Ocimum , Óleos Voláteis , Eugenol/análise , Isótopos , Peru , Óleos de Plantas/análise
17.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364183

RESUMO

Citral chemotypes Cinnamomum camphora (C. camphora) and Cinnamomum bodinieri (C. bodinieri) are promising industrial plants that contain abundant citral. For a more in-depth study, their significant biological effect, the chemical composition and antioxidant capacity of essential oils of citral-rich chemotype C. camphora and C. bodinieri (EOCC) were determined in the present study. The EOCC yield, obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged from 1.45-2.64%. Forty components more than 0.1% were identified and represented, mainly by a high content of neral (28.6-39.2%), geranial (31.8-54.1%), Z-isocitral (1.8-3.2%), E-isocitral (3.2-4.7%), geraniol (1.3-2.6%) and caryophyllene (0.6-2.4%). The antioxidant properties of EOCC were estimated by DPPH, ABTS and FRAP methods. As our results indicated, the antioxidant activity was significantly correlated to oxygenated monoterpenes. The variety of C. bodinieri (N7) presented the best antioxidant profile, given its highest inhibition of DPPH radical (IC50 = 6.887 ± 0.151 mg/mL) and ABTS radical scavenging activity (IC50 = 19.08 ± 0.02 mg/mL). To the best of our knowledge, more than 88% citral of C. bodinieri was investigated and the antioxidant properties described for the first time. Considering high essential oil yield, rich citral content and high antioxidant activity, the N7 variety will be a good candidate for pharmaceutical and cosmetic development of an improved variety.


Assuntos
Cinnamomum camphora , Cinnamomum , Óleos Voláteis , Cinnamomum camphora/química , Óleos Voláteis/química , Antioxidantes/farmacologia
18.
Plant J ; 101(5): 1103-1117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630460

RESUMO

Phytoalexins play a pivotal role in plant-pathogen interactions. Whereas leaves of rice (Oryza sativa) cultivar Nipponbare predominantly accumulated the phytoalexin sakuranetin after jasmonic acid induction, only very low amounts accumulated in the Kasalath cultivar. Sakuranetin is synthesized from naringenin by naringenin 7-O-methyltransferase (NOMT). Analysis of chromosome segment substitution lines and backcrossed inbred lines suggested that NOMT is the underlying cause of differential phytoalexin accumulation between Nipponbare and Kasalath. Indeed, both NOMT expression and NOMT enzymatic activity are lower in Kasalath than in Nipponbare. We identified a proline to threonine substitution in Kasalath relative to Nipponbare NOMT as the main cause of the lower enzymatic activity. Expanding this analysis to rice cultivars with varying amounts of sakuranetin collected from around the world showed that NOMT induction is correlated with sakuranetin accumulation. In bioassays with Pyricularia oryzae, Gibberella fujikuroi, Bipolaris oryzae, Burkholderia glumae, Xanthomonas oryzae, Erwinia chrysanthemi, Pseudomonas syringae, and Acidovorax avenae, naringenin was more effective against bacterial pathogens and sakuranetin was more effective against fungal pathogens. Therefore, the relative amounts of naringenin and sakuranetin may provide protection against specific pathogen profiles in different rice-growing environments. In a dendrogram of NOMT genes, those from low-sakuranetin-accumulating cultivars formed at least two clusters, only one of which involves the proline to threonine mutation, suggesting that the low sakuranetin chemotype was acquired more than once in cultivated rice. Strains of the wild rice species Oryza rufipogon also exhibited differential sakuranetin accumulation, indicating that this metabolic diversity predates rice domestication.


Assuntos
Antifúngicos/farmacologia , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Metiltransferases/genética , Oryza/enzimologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Ascomicetos/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Flavanonas/metabolismo , Fusarium/efeitos dos fármacos , Variação Genética , Metiltransferases/metabolismo , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/efeitos dos fármacos
19.
Antimicrob Agents Chemother ; 65(7): e0151320, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903112

RESUMO

Leishmaniasis is one of the most challenging neglected tropical diseases and remains a global threat to public health. Currently available therapies for leishmaniases present significant drawbacks and are rendered increasingly inefficient due to parasite resistance, making the need for more effective, safer, and less expensive drugs an urgent one. In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, we have screened in-house antiplasmodial libraries against axenic and intracellular forms of Leishmania infantum, Leishmania amazonensis, and Leishmania major. Several of the screened compounds showed half-maximal inhibitory concentrations (IC50s) against intracellular L. infantum parasites in the submicromolar range (compounds 1h, IC50 = 0.9 µM, and 1n, IC50 = 0.7 µM) and selectivity indexes of 11 and 9.7, respectively. Compounds also displayed activity against L. amazonensis and L. major parasites, albeit in the low micromolar range. Mechanistic studies revealed that compound 1n efficiently inhibits oxygen consumption and significantly decreases the mitochondrial membrane potential in L. infantum axenic amastigotes, suggesting that this chemotype acts, at least in part, by interfering with mitochondrial function. Structure-activity analysis suggests that compound 1n is a promising antileishmanial lead and emphasizes the potential of the quinoline-(1H)-imine chemotype for the future development of new antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmaniose , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Iminas/uso terapêutico , Leishmaniose/tratamento farmacológico , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C
20.
Proc Biol Sci ; 288(1961): 20211790, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702072

RESUMO

Plant-to-plant volatile-mediated communication and subsequent induced resistance to insect herbivores is common. Less clear is the adaptive significance of these interactions; what selective mechanisms favour plant communication and what conditions allow individuals to benefit by both emitting and responding to cues? We explored the predictions of two non-exclusive hypotheses to explain why plants might emit cues, the kin selection hypothesis (KSH) and the mutual benefit hypothesis (MBH). We examined 15 populations of sagebrush that experience a range of naturally occurring herbivory along a 300 km latitudinal transect. As predicted by the KSH, we found several uncommon chemotypes with some chemotypes occurring only within a single population. Consistent with the MBH, chemotypic diversity was negatively correlated with herbivore pressure; sites with higher levels of herbivory were associated with a few common cues broadly recognized by most individuals. These cues varied among different populations. Our results are similar to those reported for anti-predator signalling in vertebrates.


Assuntos
Artemisia , Compostos Orgânicos Voláteis , Animais , Herbivoria , Humanos , Insetos , Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa