Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 20(1): 65, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317483

RESUMO

BACKGROUND: Chicken feathers are the most abundant agro-wastes emanating from the poultry processing farms and present major concerns to environmentalists. Bioutilization of intractable feather wastes for the production of critical proteolytic enzymes is highly attractive from both ecological and biotechnological perspectives. Consequently, physicochemical conditions influencing keratinase production by Bacillus sp. CSK2 on chicken feathers formulation was optimized, and the keratinase was characterized. RESULTS: The highest enzyme activity of 1539.09 ± 68.14 U/mL was obtained after 48 h of incubation with optimized conditions consisting of chicken feathers (7.5 g/L), maltose (2.0 g/L), initial fermentation pH (5.0), incubation temperature (30 °C), and agitation speed (200 rpm). The keratinase showed optimal catalytic efficiency at pH 8.0 and a temperature range of 60 °C - 80 °C. The keratinase thermostability was remarkable with a half-life of above 120 min at 70 °C. Keratinase catalytic efficiency was halted by ethylenediaminetetraacetic acid and 1,10-phenanthroline. However, keratinase activity was enhanced by 2-mercaptoethanol, dimethyl sulfoxide, tween-80, but was strongly inhibited by Al3+ and Fe3+. Upon treatment with laundry detergents, the following keratinase residual activities were achieved: 85.19 ± 1.33% (Sunlight), 90.33 ± 5.95% (Surf), 80.16 ± 2.99% (Omo), 99.49 ± 3.11% (Ariel), and 87.19 ± 0.26% (Maq). CONCLUSION: The remarkable stability of the keratinase with an admixture of organic solvents or laundry detergents portends the industrial and biotechnological significance of the biocatalyst.


Assuntos
Bacillus/enzimologia , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Bacillus/classificação , Bacillus/genética , Bacillus thuringiensis , Proteínas de Bactérias/genética , Galinhas/metabolismo , Detergentes , Estabilidade Enzimática , Plumas/química , Plumas/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
2.
J Environ Manage ; 262: 110329, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250808

RESUMO

Extraction of keratin from keratinous waste materials, such as chicken feathers, has been identified as the favourable approach in beneficiation of this biomass. The chemical extractions of keratin by reducing agents are usually preferred because the process is much faster than its counterpart, oxidation extraction. One such reduction extraction is the use of a mixture of sodium bisulphite, sodium dodecyl sulphate and urea. There are at least five factors that may affect the keratin extraction process and its final properties when using this extraction. Even though this extraction method is often used, the effects of its independent variables have not been studied; as a result, the effects of independent variables cannot be fully linked to the extraction process and final keratin properties. Therefore, this study aimed to optimise the extraction of keratin from waste chicken feathers using sodium bisulphite, sodium dodecyl sulphate and urea. The optimisation was statistically performed using Response Surface Methodology (RSM) linked with Box-Behnken Design. After screening the independent variable using one factor at a time method, the concentration of sodium bisulphite, concentration of sodium dodecyl sulphate, reaction temperature and reaction time were chosen for the study. Twenty-nine experiments were statistically designed and executed, and their results were used to analyse the effects of all the independent variables in order to optimise the extraction process. The reaction temperature was found to be the most significant factor, while the concentration of sodium dodecyl sulphate was the most insignificant factor of this extraction process. Independent variables significance order was reaction temperature > reaction time > concentration of NaHSO3 > concentration of NaC12H25SO4. The designed reduced cubic model was significant and was used to predict the protein yield from the keratin extraction using sodium bisulphite.


Assuntos
Plumas , Queratinas , Animais , Galinhas , Dodecilsulfato de Sódio , Sulfitos , Ureia
3.
Molecules ; 25(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225031

RESUMO

Chicken feathers are predominantly composed of keratin; hence, valorizing the wastes becomes an imperative. In view of this, we isolated keratinase-producing bacteria and identified them through the 16S rDNA sequence. The process condition for keratinase activity was optimized, and electron micrography of the degradation timelines was determined. Keratinolytic bacteria were isolated and identified as Bacillus sp. FPF-1, Chryseobacterium sp. FPF-8, Brevibacillus sp. Nnolim-K2, Brevibacillus sp. FPF-12 and Brevibacillus sp. FSS-1; and their respective nucleotide sequences were deposited in GenBank, with the accession numbers MG214993, MG214994, MG214995, MG214996 and MG214999. The degree of feather degradation and keratinase concentration among the isolates ranged from 62.5 ± 2.12 to 86.0 ± 1.41(%) and 214.55 ± 5.14 to 440.01 ± 20.57 (U/mL), respectively. In the same vein, 0.1% (w/v) xylose, 0.5% (w/v) chicken feather, an initial fermentation pH of 5.0, fermentation temperature of 25 °C and an agitation speed of 150 rpm, respectively, served as the optimal physicochemical conditions for keratinase activity by Bacillus sp. FPF-1. The time course showed that Bacillus sp. FPF-1 yielded a keratinase concentration of 1698.18 ± 53.99(U/mL) at 120 h. The electron microscopic imaging showed completely structural dismemberment of intact chicken feather. Bacillus sp. FPF-1 holds great potential in the valorization of recalcitrant keratinous biomass from the agro sector into useful products.


Assuntos
Bacillus/enzimologia , Biodegradação Ambiental , Plumas/química , Plumas/microbiologia , Peptídeo Hidrolases/química , Animais , Bacillus/classificação , Bacillus/genética , Galinhas , Ativação Enzimática , Plumas/ultraestrutura , Concentração de Íons de Hidrogênio , Hidrólise , Queratinas/química , Queratinas/metabolismo , Peptídeo Hidrolases/genética , RNA Ribossômico 16S/genética , Temperatura , Xilose/química
4.
Int J Biol Macromol ; 265(Pt 1): 130722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462103

RESUMO

Keratin was synthesized by alkaline hydrolysis from chicken feathers and then continue by casting method for producing bioplastics with additional various amounts of chitosan as a filler, polyvinyl alcohol (PVA) and glycerol as a plasticizer. The main purpose is analysis the effect of chitosan on the structural properties using quantitative analysis of X-ray diffraction (XRD) spectra, chemical bonding by Fourier transforms infrared (FTIR) spectra, and mechanical properties by texture analyser to the keratin-based bioplastics. Biodegradation of bioplastics was analysed from the loss of weight by burying in the soil. It's found that, the additional of chitosan (0 %, 2 %, 5 %, and 8 %) increased the crystallinity of bioplastics by 11.83 %, 11.12 %, 18.99 %, and 17.03 %, respectively, but decreasing tensile strength and elasticity of bioplastics. Degradation of bioplastic keratin-based shows that the addition of chitosan can reduce the degradation time which is directly proportional to the loss of CO bonds. The highest degradation rate is 89.29 % in 49 days for keratin-based bioplastics with 8 % chitosan, indicated that high potential for future production.


Assuntos
Quitosana , Animais , Quitosana/química , Plumas/química , Queratinas/química , Galinhas , Citoesqueleto
5.
Heliyon ; 10(12): e32338, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988557

RESUMO

Keratin waste has become an increasingly serious environmental and health hazard. Keratin waste is mainly composed of keratin protein, which is one of the most difficult polymers to break down in nature and is resistant to many physical, chemical, and biological agents. With physical and chemical methods being environment damaging and costly, microbial degradation of keratin using keratinase enzyme is of great significance as it is both environment friendly and cost-effective. The aim of this study was to extract and purify keratinase from bacterial species isolated from the soil. Among the organisms, an isolate of Bacillus velezensis, coded as MAMA could break down chicken feathers within 72 hours (h). The isolated strain produced significant levels of keratinase in mineral salt medium by supplying chicken feathers as the sole source of nitrogen and carbon. Feather deterioration was observed with the naked eye, and enzyme activity was evaluated using a spectrophotometric assay. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymography results revealed that the keratinase protein produced by Bacillus velezensis had a molecular weight between 40 and 55 kilodalton (kDa).

6.
Int J Biol Macromol ; 260(Pt 2): 129659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266845

RESUMO

KerJY-23 was a novel keratinase from feather-degrading Ectobacillus sp. JY-23, but its enzymatic characterization and structure are still unclear. In this study, the KerJY-23 was obtained by heterologous expression in Escherichia coli BL21(DE3), and enzymatic properties indicated that KerJY-23 was optimal at 60 °C and pH 9.0 and could be promoted by divalent metal ions or reducing agents. Furthermore, KerJY-23 had a broad substrate specificity towards casein, soluble keratin, and expanded feather powder, but its in vitro degradation against chicken feathers required an additional reducing agent. Homology modeling indicated that KerJY-23 contained a highly conserved zinc-binding HELTH motif and a His-Asp-Ser catalytic triad that belonged to the typical characteristics of M4-family metallo-keratinase and serine-keratinase, respectively. Molecular docking revealed that KerJY-23 achieved a reinforced binding on feather keratin via abundant hydrogen bonding interactions. This work not only deepened understanding of the novel and interesting metallo-serine keratinase KerJY-23, but also provided a theoretical basis for realizing the efficient use of waste feather keratin.


Assuntos
Galinhas , Serina , Animais , Serina/metabolismo , Galinhas/metabolismo , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Plumas/metabolismo , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
7.
Plants (Basel) ; 13(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39274017

RESUMO

The present study aimed at converting meat industry waste, particularly waste bones and chicken feathers, into biochar to recycle valuable nutrients present in it, which ultimately become part of the municipal waste. The bone biochar (BB) and feathers biochar (FB) were prepared at 550 °C, and their potential was evaluated as an organic amendment for the growth of sunflower. The ash content (AC) and fixed carbon (FC) improved significantly in prepared biochars as compared to raw feedstock. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses signaled the occurrence of various functional groups viz. amide group and hydroxyapatite, porosity, and multiple nutrients. Application of BB and FB in potted soil alone as well as in composites (1:1, 1:2, 2:1) at 1%, 3%, and 5% (w/w) and synthetic fertilizer significantly increased soil pH, electrical conductivity (ECe), organic matter (OM) and water holding capacity (WHC), while reducing the bulk density (BD). The growth of plants grown in soil treated with a 2:1 composite of feathers and bone biochar at 5% application rate showed significantly greater differences in plant height, total chlorophyll content, and plant dry weight than the control but was comparable to growth with chemical fertilizer, rendering it a potential alternative to chemical-based synthetic fertilizer.

8.
Bioresour Technol ; 396: 130417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316229

RESUMO

Global food waste emits substantial quantities of nitrogen to the environment (6.3 Mtons annually), chicken feather (CF) waste is a major contributor to this. Pyrolysis, in particular co-pyrolysis of nitrogen-rich and lignocellulosic waste streams is a promising strategy to improve the extent of pyrolytic nitrogen retention by incorporating nitrogen in its solid biochar structure. As such, this biochar can serve as a precursor for nitrogen-enriched activated carbons for application in supercapacitors. Therefore, this study investigates the co-pyrolysis of CF with macadamia nut shells (MNS) to create nitrogen-rich activated carbons. Co-pyrolysis increased nitrogen retention during pyrolysis from 9 % to 18 % compared to CF mono-pyrolysis, while the porosity was maintained. After removing undesirable inorganic impurities by dilute acid washing, this led to a specific capacitance of 21F/g using a scan rate of 20 mV/s. Finally, cycling stability tests demonstrated good stability with 73 % capacitance retention after 10 000 cycles.


Assuntos
Carvão Vegetal , Macadamia , Eliminação de Resíduos , Animais , Galinhas , Nitrogênio/química , Plumas , Alimentos , Pirólise , Eletrodos
9.
Environ Sci Pollut Res Int ; 30(14): 39558-39567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790699

RESUMO

This systematic review presents the potential of using feather waste as a ß-keratin source, including the Brazilian scenario in the generation of this byproduct. The structure and properties of α- and ß-keratin, the methods commonly reported to extract keratin from poultry feathers, and applications of feather keratin-based materials are also covered in this review. The literature search for poultry production data in Brazil was conducted for the last 2 years, for the period 2021-2022. A broad literature search for extraction methods and applications of feather keratin was done for the period 2001-2022. The poultry industry is one of the largest sectors of the food industry, and Brazil was the third-largest world producer of chicken meat with more than six billion chickens slaughtered in 2021. Poultry feathers constitute about 7% weight of broilers; thus, it can be estimated that about one million tons of poultry feathers were generated in Brazil in 2021, and the improper disposal of this byproduct contributes to environmental problems and disease transmission. The most common method of reusing feathers is the production of feather meal. From economic and environmental points of view, it is advantageous to develop processes to add value to this byproduct, including the extraction of keratin. Among natural biodegradable polymers, keratin-based materials have revolutionized the field of biomaterials due to their biocompatibility and biodegradability, allowing their application in biomedical, pharmaceutical, chemical, and engineering areas.


Assuntos
Plumas , beta-Queratinas , Animais , Plumas/química , Queratinas , beta-Queratinas/análise , Galinhas , Brasil , Aves Domésticas
10.
Int J Biol Macromol ; 241: 124446, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37088187

RESUMO

Biosorbents for water remediation were prepared using keratin biopolymer cross-linked with nanochitosan (NC). Keratin proteins were dissolved using reducing agents and NC was incorporated with concentrations of 1, 3 and 5 % individually into the keratin solution. The mixtures were thermally treated at 75°C overnight, which promoted the formation of ester bonds between the hydroxyl groups of nanochitosan and the carboxylic groups of the keratin biopolymer. The resulting keratin derived biosorbents were characterized by X-Ray photoelectron spectroscopy, confirming the cross-linking between keratin and nanochitosan. The chicken feathers keratin (CFK) surface modifications with nanochitosan were examined with Brunauer-Emmett-Teller, scanning and transmission electron microscopies. The sorption capacity of biosorbents was tested for eight different metals simultaneously at different contact times (15, 30, 60, 120, 240, 280 mins) and pH (5.5, 7.5 and 8.5), including arsenic, selenium, chromium, nickel, cobalt, lead, cadmium and zinc, using simulated industrial wastewater water containing 600 µgl-1 concentration of each metal. The synthesized environmentally benign biosorbents exhibited biosorption of metals upto 98 % at pH 7.5 and a contact time of 24 h, showing their potential for industrial wastewater remediation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Águas Residuárias , Queratinas/química , Poluentes Químicos da Água/química , Adsorção , Água , Concentração de Íons de Hidrogênio
11.
Polymers (Basel) ; 15(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376374

RESUMO

Ionic liquid 1-butyl-3-methylimidazolium chloride [BMIM][Cl] was used to prepare cellulose (CELL), cellulose/polycaprolactone (CELL/PCL), cellulose/polycaprolactone/keratin (CELL/PCL/KER), and cellulose/polycaprolactone/keratin/ground calcium carbonate (CELL/PCL/KER/GCC) biodegradable mulch films. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy, optical microscopy, and Field-Emission Scanning Electron Microscopy (FE-SEM) were used to verify the films' surface chemistry and morphology. Mulch film made of only cellulose regenerated from ionic liquid solution exhibited the highest tensile strength (75.3 ± 2.1 MPa) and modulus of elasticity of 944.4 ± 2.0 MPa. Among samples containing PCL, CELL/PCL/KER/GCC is characterized by the highest tensile strength (15.8 ± 0.4 MPa) and modulus of elasticity (687.5 ± 16.6 MPa). The film's breaking strain decreased for all samples containing PCL upon the addition of KER and KER/GCC. The melting temperature of pure PCL is 62.3 °C, whereas that of CELL/PCL film has a slight tendency for melting point depression (61.0 °C), which is a characteristic of partially miscible polymer blends. Furthermore, Differential Scanning Calorimetry (DSC) analysis revealed that the addition of KER or KER/GCC to CELL/PCL films resulted in an increment in melting temperature from 61.0 to 62.6 and 68.9 °C and an improvement in sample crystallinity by 2.2 and 3.0 times, respectively. The light transmittance of all studied samples was greater than 60%. The reported method for mulch film preparation is green and recyclable ([BMIM][Cl] can be recovered), and the inclusion of KER derived by extraction from waste chicken feathers enables conversion to organic biofertilizer. The findings of this study contribute to sustainable agriculture by providing nutrients that enhance the growth rate of plants, and hence food production, while reducing environmental pressure. The addition of GCC furthermore provides a source of Ca2+ for plant micronutrition and a supplementary control of soil pH.

12.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335420

RESUMO

Incorporation of residua into polymeric composites can be a successful approach to creating materials suitable for specific applications promoting a circular economy approach. Elastomeric (Ground Tire Rubber or GTR) and biogenic (chicken feathers or CFs) wastes were used to prepare polymeric composites in order to evaluate the tensile, acoustic and structural differences between both reinforcements. High-density polyethylene (HDPE), polypropylene (PP) and ethylene vinyl acetate (EVA) polymeric matrices were used. EVA matrix defines better compatibility with both reinforcement materials (GTR and CFs) than polyolefin matrices (HDPE and PP) as it has been corroborated by Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA) and scanning electron microscopy (SEM). In addition, composites reinforced with GTR showed better acoustic properties than composites reinforced with CFs, due to the morphology of the reinforcing particles.

13.
Protein J ; 40(3): 388-395, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33754250

RESUMO

Streptomyces sp. 2M21 was evaluated for keratinase production in bioreactors using chicken feathers. Firstly, optimization of bioengineering parameters (agitation and aeration rates) using Response Surface Methodology was carried out in 2 L bioreactors. Optimized conditions identified by the modified quadratic model were verified as 150 rpm and 1 vvm experimentally corresponding to 351 U/ml of keratinase activity. Moreover, scaling up sequentially to 20 L bioreactors was implemented using constant impeller tip speed and constant mass transfer coefficient as key scale-up parameters. The keratinase activity in 5, 10 and 20 L bioreactors showed similar results with the one of shake flasks (412 U/ml) and 2 L bioreactors (351 U/ml)with respect to the keratinase activity values of 336, 385 and 344 U/ml, respectively. The results suggest keratinase production by evaluating chicken feathers in commercial level. Furthermore, this study has potential to contribute industrial scale production of keratinase by Streptomyces sp. 2M21 using the proposed bioreactor conditions.


Assuntos
Proteínas de Bactérias/biossíntese , Reatores Biológicos , Peptídeo Hidrolases/biossíntese , Streptomyces/crescimento & desenvolvimento
14.
J Environ Health Sci Eng ; 19(1): 707-720, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150268

RESUMO

PURPOSE: Copper is a heavy metal that causes considerable deterioration to human health and ecosystems, so their elimination in water bodies is of great interest. Present investigation shows the efficiency of chicken feather as a natural adsorbent and its subsequent degradation in order to have an integral treatment and avoid the unconscious disposition. METHODS: Optimal conditions of adsorption process were determined using the Response Surface Methodology (RSM)-Box-Behnken design (BBD) with three variables (pH, temperature and adsorbent dose). After that, the optimal conditions were used to analize the adsorption isotherms by Langmuir, Freundlich and Temkin models; also thermodynamics parameters Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were obtained. Finally, the biodegradation of the residue denominated "adsorbent-adsorbate" complex was evaluated through monitoring the soluble protein production, keratinolytic activity, ninhydrin positive products, sulfhydryl groups, and gravimetrically analysis. RESULTS: The optimum conditions for the adsorption were 30°C and pH 3, the Langmuir model was better described the adsorption process at 30°C, while at 40°C was Temkin model. The chicken feather turned out a natural adsorbent competitive with respect to others used in the removal of copper in liquid systems; obtaining qmax of 7.84 and 11.48 mg/g at 30 and 40°C, respectively; it was also a favorable and spontaneous process. Finally the adsorbent used was degraded by a keratinolytic consortium. CONCLUSIONS: In this study, chicken feather was used as a low cost adsorbent for copper efficiently and with the feasibility that the adsorbent can be biodegraded and release the metal.

15.
Front Bioeng Biotechnol ; 9: 720176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422784

RESUMO

Microbial keratinases' versatility in the beneficiation of keratinous waste biomass into high-value products prompts their application in diverse spheres hence, advancing green technology and the bioeconomy. Consequently, a feather-degrading Chryseobacterium aquifrigidense FANN1 (NCBI: MW169027) was used to produce keratinase, and its biochemical properties were determined. The optimization of physicochemical parameters and analysis of the free amino acid constituents of the feather hydrolysate were also carried out. FANN1 showed a maximum keratinase yield of 1,664.55 ± 42.43 U/mL after 72 h, at optimal process conditions that included initial medium pH, incubation temperature, inoculum size, and chicken feather concentration of 8, 30°C, 4% (v/v), and 15 (g/L), respectively. Analysis of degradation product showed 50.32% and 23.25% as the protein value and total free amino acids, respectively, with a relatively high abundance of arginine (2.25%) and serine (2.03%). FANN1 keratinase was optimally active at pH 8.0 and relatively moderate to high temperature (40-50°C). EDTA and 1,10-phenanthroline inhibited the keratinase activity, and that suggests a metallo-keratinase. The enzyme showed remarkable stability in the presence of chemical agents, with residual activity 141 ± 10.38%, 98 ± 0.43%, 111 ± 1.73%, 124 ± 0.87%, 104 ± 3.89%, 107 ± 7.79%, and 112 ± 0.86% against DTT, H2O2, DMSO, acetonitrile, triton X-100, tween-80, and SDS, respectively. The residual activity of FANN1 keratinase was enhanced by Sunlight (129%), Ariel (116%), MAQ (151%), and Surf (143%) compared to the control after 60 min preincubation. Likewise, the enzyme was remarkably stable in the presence Fe3+ (120 ± 5.06%), Ca2+ (100 ± 10.33%), Na+ (122 ± 2.95%), Al3+ (106 ± 10.33%); while Co2+ (68 ± 8.22%) and Fe2+ (51 ± 8.43%) elicited the most repressive effect on keratinase activity. The findings suggest that C. aquifrigidense FANN1 is a potential candidate for keratinous wastes bio-recycling, and the associated keratinase has a good prospect for application in detergent formulation.

16.
Bioresour Technol ; 297: 122452, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787507

RESUMO

Keeping environment and sustainability concept in view with preparation of new sorbents, two waste by-products from the poultry industry, i.e. feather and eggshell, were used for synthesis of a new magnetic activated carbon for sorption of heavy metal ions. Using response surface methodology based central composite design (RSM-CCD) technique, chicken feather and acid-digested eggshell were used as precursor and activation material, respectively, for the synthesis of the herein studied activated carbon (eggshell activated chicken feather carbon; ESCFC). The prepared activated carbon was magnetized for easy separation from water media, and iron oxide magnetized ESCFC (IOM-ESCFC) was comprehensively examined for removing some heavy metallic ions (Pb2+, Cd2+, Cu2+, Zn2+, and Ni2+) from water. The maximum mono-layer sorption capacities and the highness of sorption speed, along with thermodynamic studies, demonstrated that IOM-ESCFC can be regarded as a potential adsorbent against heavy metal ions from waters and wastewaters.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Galinhas , Casca de Ovo , Plumas , Íons
17.
Carbohydr Polym ; 227: 115361, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590858

RESUMO

Chicken feather peptone (CFP) derived from poultry waste is a rich source of essential minerals and amino acids. This, along with suitable carbon source, can be used as a low cost complex supplemental nutrient source for microbial fermentation. In the present work, CFP blended with sucrose was evaluated for the production of levan using Bacillus subtilis MTCC 441. Amount of CFP added to the medium significantly influenced levan production and it was found that at a concentration 2 g/L, maximum levan yield of 0.26 ±â€¯0.04 g/g sucrose was obtained. The levan yield obtained with CFP as a low cost supplemental nutrient source was comparable with that obtained from commercial medium (0.31 ±â€¯0.02 g/g sucrose). Levan produced using CFP was tested on primary cell lines at various concentrations (100-1000 µM) and found to be non-toxic and bio-compatible in nature. This indicates that CFP could be used as low cost nutrient source for levan production.


Assuntos
Bacillus subtilis/metabolismo , Frutanos/metabolismo , Peptonas/metabolismo , Sacarose/metabolismo , Animais , Sobrevivência Celular , Galinhas , Plumas/química , Fermentação , Frutanos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos
18.
Polymers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823714

RESUMO

The poultry industry, highly prevalent worldwide, generates approximately 7.7 × 106 metric tons of chicken feathers (CFs), which become a major environmental challenge due to their disposal when considered waste or due to their energy transformation consumption when considered by-products. CFs are mainly composed of keratin (approximately 90%), which is one of the most important biopolymers whose inherent characteristics make CFs suitable as biopolymer fibers (BPFs). This paper first assesses the morphological and chemical characteristics of these BPFs, through scanning electron microscopy and energy dispersive X-ray spectroscopy, and then evaluates the waste valorization of these BPFs as a sustainable alternative for fiber-reinforcement of earthen mixes intended for earthen construction, such as adobe masonry, rammed earth, and earthen plasters. In particular, four earthen mixes with increasing doses of BPFs (i.e., 0%, 0.25%, 0.5%, and 1% of BPFs by weight of soil) were developed to evaluate the impact of BPF-reinforcement on the capillary, mechanical, impact, and abrasion performance of these earthen mixes. The addition of BPFs did not significantly affect the mechanical performance of earthen mixes, and their incorporation had a statistically significant positive effect on the impact performance and abrasion resistance of earthen mixes as the BPF dose increased. On the other hand, the addition of BPFs increased the capillary water absorption rate, possibly due to a detected increment in porosity, which might reduce the durability of water-exposed BPF-reinforced earthen mixes, but a statistically significant increment only occurred when the highest BPF dose was used (1%).

19.
Polymers (Basel) ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816975

RESUMO

In the present work, sustainable rigid polyurethane foams (RPUF) reinforced with chicken feathers (CF) were prepared and characterized. The bio-based polyol used to formulate the foams was obtained from castor oil. This investigation reports the influence of the chicken feathers fibers as reinforcement of RPUF, on water absorption, thermal, mechanical and morphological properties (field-emission scanning electron microscope-FESEM) and thermal conductivity on water-blown biofoams. It was found that the biofoams improved thermal insulating properties when CF was added. The addition of CF to foams provided lower heat flux density to the biofoams obtaining bio-based materials with better insulation properties. The results obtained in this study proved that the incorporation of CF to RPUF modified the cell structure of the foams affecting their physical and mechanical properties, as well as functional properties such as the heat transmission factor. These biofoams containing up to 45% of bio-based materials have shown the potential to replace fully petroleum-based foams in thermal insulation applications.

20.
Environ Sci Pollut Res Int ; 26(10): 10333-10342, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30761493

RESUMO

The aim of this study was to show the dynamics of changes in the activity of enzymes responsible for C, N, and S metabolism, i.e., cellulase, protease, urease, and arylsulfatase in two lignocellulosic composts as well as changes in the concentration of mineral forms important in plant nutrition (N-NH4+, N-NO3-, S-SO42-). Most of the enzyme activity was higher during 10 weeks of composting in compost I, containing higher amounts of easily available organic matter than in compost II. Enzymatic activities in compost II remained at a higher level for a longer time, but they increased at a slower rate. Mineral content changes in the compost mass consisted primarily of an increase in N-NO3- concentration and a decrease in N-NH4+ and S-SO42- levels, especially in compost I. The concentration of mineral nitrogen and sulfur forms in compost water extracts was about 10-100 times lower than in the compost mass. At the end of composting, the amount of sulfates in the compost mass was 30 and 150 mg kg-1 dw in compost II and I, respectively. In this context, the composts obtained should be considered valuable for fertilizing soils poor in this component and for cultivating plants with high sulfate S demand.


Assuntos
Compostagem/métodos , Plumas/química , Nitrogênio/química , Enxofre/química , Animais , Biodegradação Ambiental , Celulase , Celulose/química , Galinhas , Lignina/química , Minerais , Solo , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa