Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 169(3): 497-509.e13, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431248

RESUMO

The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.


Assuntos
Envelhecimento/patologia , Quitina/toxicidade , Quitinases/metabolismo , Pneumopatias/patologia , Animais , Aspergillus niger , Quitinases/genética , Citocinas/metabolismo , Células Epiteliais/patologia , Fibrose/patologia , Técnicas de Introdução de Genes , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Pyroglyphidae/química , Transdução de Sinais
2.
Semin Immunol ; 67: 101759, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031560

RESUMO

Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.


Assuntos
Asma , Quitinases , Hipersensibilidade , Animais , Humanos , Quitinases/metabolismo , Inflamação , Quitina/metabolismo , Mamíferos/metabolismo
3.
Trends Immunol ; 44(11): 868-870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806931

RESUMO

Dietary fibers, including chitin, have a major impact on gastrointestinal (GI) physiology and immunity. Two recent articles, by Parrish et al. and Kim et al., credit depletion of dietary fibers or supplementation with chitin, with negative and positive effects, respectively, on the immune system of the murine digestive tract. This has relevant implications for food allergies and systemic metabolism.


Assuntos
Fibras na Dieta , Verrucomicrobia , Humanos , Animais , Camundongos , Verrucomicrobia/metabolismo , Trato Gastrointestinal , Quitina/metabolismo
4.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750795

RESUMO

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Assuntos
Quitina , Proteína 1 Semelhante à Quitinase-3 , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/química , Humanos , Quitina/metabolismo , Quitina/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/química , Evolução Molecular , Hexosaminidases/metabolismo , Hexosaminidases/química , Hexosaminidases/genética , Domínio Catalítico , Substituição de Aminoácidos , Éxons , Sequência de Aminoácidos
5.
Plant Mol Biol ; 114(3): 41, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625509

RESUMO

Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.


Assuntos
Quitinases , Oryza , Oryza/genética , Genótipo , Rhizoctonia , Quitinases/genética
6.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605414

RESUMO

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Assuntos
Quitina , Quitinases , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quitina/farmacologia , Quitina/uso terapêutico , Quitinases/uso terapêutico , Terapia de Imunossupressão , Metástase Linfática , Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
7.
Biochem Biophys Res Commun ; 706: 149746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
8.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790016

RESUMO

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Assuntos
Quitinases , Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Quitinases/genética , Quitinases/metabolismo , Resistência à Doença/genética , Fusarium/genética , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Irã (Geográfico) , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
9.
New Phytol ; 241(1): 394-408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36866975

RESUMO

The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active ß-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.


Assuntos
Quitinases , Hidrolases , Proteômica , Nicotiana , Pseudomonas syringae , Doenças das Plantas/microbiologia
10.
Cytokine ; 179: 156631, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710115

RESUMO

BACKGROUND: Chitinase 3 like-1 (CHI3L1) has been reported to function as an oncogene in many types of cancer. However, the biological function of CHI3L1 in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: Differentially expressed genes (DEGs) in NPC tissues in GSE64634 and GSE12452 were downloaded from Gene Expression Omnibus (GEO). CHI3L1, interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) mRNA expression was examined by qRT-PCR. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Western blot analysis was used to measure the changes of CHI3L1, nuclear factor-κappaB (NF-κB), and protein kinase B (Akt) pathways. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses were performed using DAVID database. RESULTS: We identified 3 overlapping DEGs using Draw Venn diagram, among which CHI3L1 was chosen for the following analyses. CHI3L1 was upregulated in NPC tissues and cells. CHI3L1 silencing suppressed inflammatory response by inactivating the NF-κB pathway and inhibited cell proliferation in NPC cells. On the contrary, CHI3L1 overexpression induced inflammatory response by activating the NF-κB pathway and promoted cell proliferation in NPC cells. According to GO and KEGG analyses, CHI3L1 positive regulates Akt signaling and is enriched in the PI3K-Akt pathway. CHI3L1 knockdown inhibited the Akt pathway, and CHI3L1 overexpression activated the Akt pathway in NPC cells. Akt overexpression abolished the effects of CHI3L1 knockdown on inflammatory response, NF-κB pathway, and proliferation in NPC cells. On the contrary, Akt knockdown abolished the effects of CHI3L1 overexpression on inflammatory response, NF-κB pathway, and proliferation in NPC cells. CONCLUSION: CHI3L1 knockdown inhibited NF-κB-dependent inflammatory response and promoting proliferation in NPC cells by inactivating the Akt pathway.


Assuntos
Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Citocinas , NF-kappa B , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Inflamação/metabolismo , Inflamação/genética
11.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160324

RESUMO

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Assuntos
Quitinases , Moscas Domésticas , Animais , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Quitinases/metabolismo , Larva , Proteínas Recombinantes/genética , Quitina/metabolismo
12.
Arch Biochem Biophys ; 752: 109854, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081338

RESUMO

Processive movement is the key reaction for crystalline polymer degradation by enzyme. Product release is an important phenomenon in resetting the moving cycle, but how it affects chitinase kinetics was unknown. Therefore, we investigated the effect of diacetyl chitobiose (C2) on the biochemical activity and movement of chitinase A from Serratia marcescens (SmChiA). The apparent inhibition constant of C2 on crystalline chitin degradation of SmChiA was 159 µM. The binding position of C2 obtained by X-ray crystallography was at subsite +1, +2 and Trp275 interact with C2 at subsite +1. This binding state is consistent with the competitive inhibition obtained by biochemical analysis. The apparent inhibition constant of C2 on the moving velocity of high-speed (HS) AFM observations was 330 µM, which is close to the biochemical results, indicating that the main factor in crystalline chitin degradation is also the decrease in degradation activity due to inhibition of processive movement. The Trp275 is a key residue for making a sliding intermediate complex. SmChiA W275A showed weaker activity and affinity than WT against crystalline chitin because it is less processive than WT. In addition, biochemical apparent inhibition constant for C2 of SmChiA W275A was 45.6 µM. W275A mutant showed stronger C2 inhibition than WT even though the C2 binding affinity is weaker than WT. This result indicated that Trp275 is important for the interaction at subsite +1, but also important for making sliding intermediate complex and physically block the rebinding of C2 on the catalytic site for crystalline chitin degradation.


Assuntos
Quitinases , Quitinases/química , Quitinases/metabolismo , Quitina/química , Quitina/metabolismo , Domínio Catalítico , Ligação Proteica , Serratia marcescens/metabolismo
13.
Arch Microbiol ; 206(5): 220, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630188

RESUMO

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.


Assuntos
Ascomicetos , Quitinases , MicroRNAs , Quitina , Quitinases/genética , MicroRNAs/genética
14.
Arch Microbiol ; 206(7): 311, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900220

RESUMO

In this study, the pathogenicity of local Beauveria bassiana strains was elucidated using molecular and metabolomics methodologies. Molecular verification of the B. bassiana-specific chitinase gene was achieved via phylogenetic analysis of the Bbchit1 region. Subsequent metabolomic analyses employing UPLC-Q-TOF-MS revealed a different number of non-volatile metabolite profiles among the six B. bassiana strains. Bb6 produced the most non-volatile compounds (17) out of a total of 18, followed by Bb15 (16) and Bb12 (15). Similarly, Bb5, Bb8, and Bb21, three non-virulent B. bassiana strains, produced 13, 14, and 14 metabolites, respectively. But unique secondary metabolites like bassianolide and beauvericin, pivotal for virulence and mite management, were exclusively found in the virulent strains (Bb6, Bb12, and Bb15) of B. bassiana. The distinctive non-volatile metabolomic profiles of these strains underscore their pathogenicity against Tetranychus truncatus, suggesting their promise in bio-control applications.


Assuntos
Beauveria , Metabolômica , Filogenia , Tetranychidae , Beauveria/genética , Beauveria/patogenicidade , Beauveria/metabolismo , Animais , Tetranychidae/microbiologia , Tetranychidae/genética , Virulência , Quitinases/metabolismo , Quitinases/genética , Metaboloma , Metabolismo Secundário
15.
Microb Cell Fact ; 23(1): 126, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698402

RESUMO

BACKGROUND: Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to  evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by  response surface methodology (RSM) which delvs  into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers. RESULTS: In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts. CONCLUSIONS: The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.


Assuntos
Biodegradação Ambiental , Quitinases , Quitosana , Oligossacarídeos , Proteínas Recombinantes , Quitinases/metabolismo , Quitinases/genética , Oligossacarídeos/metabolismo , Animais , Quitosana/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Quitina/metabolismo , Hidrocarbonetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Crustáceos/metabolismo , Emulsificantes/metabolismo , Emulsificantes/química
16.
Microb Cell Fact ; 23(1): 31, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245740

RESUMO

BACKGROUND: Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported. RESULTS: Three new chitinases from M. pulcherrima, MpChit35, MpChit38 and MpChit41, were molecularly characterized and extracellularly expressed in Pichia pastoris to about 91, 90 and 71 mU ml- 1, respectively. The three enzymes hydrolysed colloidal chitin with optimal activity at 45 ºC and pH 4.0-4.5, increased 2-times their activities using 1 mM of Mn2+ and hydrolysed different types of commercial chitosan. The partial separation and characterization of the complex COS mixtures produced from the hydrolysis of chitin and chitosan were achieved by a new anionic chromatography HPAEC-PAD method and mass spectrometry assays. An overview of the predicted structures of these proteins and their catalytic modes of action were also presented. Depicted their high sequence and structural homology, MpChit35 acted as an exo-chitinase producing di-acetyl-chitobiose from chitin while MpChit38 and MpChit41 both acted as endo-chitinases producing tri-acetyl-chitotriose as main final product. CONCLUSIONS: Three new chitinases from the yeast M. pulcherrima were molecularly characterized and their enzymatic and structural characteristics analysed. These enzymes transformed chitinous materials to fully and partially acetylated COS through different modes of splitting, which make them interesting biocatalysts for deeper structural-function studies on the challenging enzymatic conversion of chitin.


Assuntos
Quitinases , Quitosana , Quitina/química , Quitinases/genética , Quitinases/química , Proteínas , Saccharomyces cerevisiae/metabolismo
17.
Br J Nutr ; 131(8): 1326-1341, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38163983

RESUMO

The aim of this study is to determine to what extent the addition of chitinase to black soldier fly (BSF) larval meal enriched or not with long-chain PUFA (LC-PUFA) could improve growth, protein digestion processes and gut microbial composition in Nile tilapia. Two different types of BSF meal were produced, in which larvae were reared on substrates formulated with vegetable culture substrate (VGS) or marine fish offal substrate (FOS). The BSF raised on VGS was enriched in α-linolenic acid (ALA), while that raised on FOS was enriched in ALA + EPA + DHA. Six BSF-based diets, enriched or not with chitinase, were formulated and compared with a control diet based on fishmeal and fish oil (FMFO). Two doses (D) of chitinase from Aspergillus niger (2 g and 5 g/kg feed) were added to the BSF larval diets (VGD0 and FOD0) to obtain four additional diets: VGD2, VGD5, FOD2 and FOD5. After 53 d of feeding, results showed that the BSF/FOS-based diets induced feed utilisation, protein efficiency and digestibility, as well as growth comparable to the FMFO control diet, but better than the BSF/VGS-based diets. The supplementation of chitinase to BSF/FOS increased in fish intestine the relative abundance of beneficial microbiota such as those of the Bacillaceae family. The results showed that LC-PUFA-enriched BSF meal associated with chitinase could be used as an effective alternative to fishmeal in order to improve protein digestion processes, beneficial microbiota and ultimately fish growth rate.


Assuntos
Quitinases , Ciclídeos , Dípteros , Animais , Larva , Ácidos Graxos , Ração Animal/análise , Dípteros/química , Ácidos Graxos Insaturados , Verduras
18.
Mol Biol Rep ; 51(1): 731, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869677

RESUMO

BACKGROUND: Chitinase (Chi) is a pathogenesis-related protein, also reported to play an important role in plant responses to abiotic stress. However, its role in response to abiotic stress in barley is still unclear. RESULTS: In this study, a total of 61 Chi gene family members were identified from the whole genome of wild barley EC_S1. Phylogenetic analysis suggested that these family genes were divided into five groups. Among these genes, four pairs of collinearity genes were discovered. Besides, abundant cis-regulatory elements, including drought response element and abscisic acid response element were identified in the promoter regions of HvChi gene family members. The expression profiles revealed that most HvChi family members were significantly up-regulated under drought stress, which was also validated by RT-qPCR measurements. To further explore the role of Chi under drought stress, HvChi22 was overexpressed in Arabidopsis. Compared to wild-type plants, overexpression of HvChi22 enhanced drought tolerance by increasing the activity of oxidative protective enzymes, which caused less MDA accumulation. CONCLUSION: Our study improved the understanding of the Chi gene family under drought stress in barley, and provided a theoretical basis for crop improvement strategies to address the challenges posed by changing environmental conditions.


Assuntos
Quitinases , Secas , Regulação da Expressão Gênica de Plantas , Hordeum , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Hordeum/genética , Quitinases/genética , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Plantas Geneticamente Modificadas/genética , Perfilação da Expressão Gênica/métodos , Resistência à Seca
19.
Parasitology ; : 1-10, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311342

RESUMO

Rhipicephalus microplus, the cattle fever tick, is the most important ectoparasite impacting the livestock industry worldwide. Overreliance on chemical treatments for tick control has led to the emergence of acaricide-resistant ticks and environmental contamination. An immunological strategy based on vaccines offers an alternative approach to tick control. To develop novel tick vaccines, it is crucial to identify and evaluate antigens capable of generating protection in cattle. Chitinases are enzymes that degrade older chitin at the time of moulting, therefore allowing interstadial metamorphosis. In this study, 1 R. microplus chitinase was identified and its capacity to reduce fitness in ticks fed on immunized cattle was evaluated. First, the predicted amino acid sequence was determined in 4 isolates and their similarity was analysed by bioinformatics. Four peptides containing predicted B-cell epitopes were designed. The immunogenicity of each peptide was assessed by inoculating 2 cattle, 4 times at 21 days intervals, and the antibody response was verified by indirect ELISA. A challenge experiment was conducted with those peptides that were immunogenic. The chitinase gene was successfully amplified and sequenced, enabling comparison with reference strains. Notably, a 99.32% identity and 99.84% similarity were ascertained among the sequences. Furthermore, native protein recognition was demonstrated through western blot assays. Chitinase peptide 3 reduced the weight and oviposition of engorged ticks, as well as larvae viability, exhibiting a 71% efficacy. Therefore, chitinase 3 emerges as a viable vaccine candidate, holding promise for its integration into a multiantigenic vaccine against R. microplus.

20.
Parasitology ; 151(4): 429-439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571301

RESUMO

Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1­M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.


Assuntos
Entamoeba , Tipagem de Sequências Multilocus , Marcadores Genéticos , Entamoeba/genética , Entamoeba/classificação , Entamoeba/isolamento & purificação , Humanos , Entamebíase/parasitologia , Entamebíase/epidemiologia , Genótipo , Polimorfismo de Nucleotídeo Único , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa