Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
1.
Mol Cell ; 70(4): 614-627.e7, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754824

RESUMO

Bleach (HOCl) is a powerful oxidant that kills bacteria in part by causing protein aggregation. It inactivates ATP-dependent chaperones, rendering cellular proteins mostly dependent on holdases. Here we identified Escherichia coli CnoX (YbbN) as a folding factor that, when activated by bleach via chlorination, functions as an efficient holdase, protecting the substrates of the major folding systems GroEL/ES and DnaK/J/GrpE. Remarkably, CnoX uniquely combines this function with the ability to prevent the irreversible oxidation of its substrates. This dual activity makes CnoX the founding member of a family of proteins, the "chaperedoxins." Because CnoX displays a thioredoxin fold and a tetratricopeptide (TPR) domain, two structural motifs conserved in all organisms, this investigation sets the stage for the discovery of additional chaperedoxins in bacteria and eukaryotes that could cooperate with proteins from both the Hsp60 and Hsp70 families.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Repetições de Tetratricopeptídeos , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Clareadores/farmacologia , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Glutationa/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Halogenação , Chaperonas Moleculares/química , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Homologia de Sequência , Tiorredoxinas/química
2.
Biochem Biophys Res Commun ; 710: 149892, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581951

RESUMO

Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Cloretos/metabolismo , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo
3.
Small ; : e2402427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751309

RESUMO

Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 µmol g-1 h-1 with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.

4.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953777

RESUMO

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Assuntos
Poluentes Químicos da Água , Cinética , Radicais Livres/química , Poluentes Químicos da Água/química , Oxirredução , Ferro/química , Compostos de Ferro/química , Minerais/química
5.
Environ Sci Technol ; 58(1): 704-716, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109774

RESUMO

With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17ß-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by ∼4-6 orders of magnitude for 17ß-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were ∼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Águas Residuárias , Estrona , Diclofenaco/análise , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfetantes/química , Estrogênios , Água Potável/análise , Água Potável/química , Estradiol , Purificação da Água/métodos
6.
Environ Sci Technol ; 58(8): 3838-3848, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351523

RESUMO

Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloro/química , Cloro/metabolismo , Halogenação , Peróxido de Hidrogênio , Solo , Ecossistema , Antibacterianos , Catálise
7.
Environ Sci Technol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096310

RESUMO

Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 µg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 µg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.

8.
Environ Res ; 249: 118343, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311202

RESUMO

Antibiotics and available chlorine coexist in multiple aquatic environments, and thus antibiotics and their chlorinated disinfection by-products (Cl-DBPs) have been a great concern for the nature and human health. Herein, the degradation intermediates and transformation pathways of sulfamethoxazole (SMX) Cl-DBPs in constructed wetlands (CWs) were investigated. A total of five SMX Cl-DBPs and their twenty degradation products in CWs was identified in this study. SMX and its Cl-DBPs influenced the biodegradation rather than the adsorption process in CWs. S1 atom on sulfonyl group of SMX had the strongest nucleophilicity, and was most vulnerable for nucleophilic attack. N5 and N7 on amino groups, and C17 on the methyl group had great electronegativity, and were susceptible to electrophilic reactions. S1-N5 and S1-C8 bonds of SMX are the most prone to cleavage, followed by C11-N5, C16-C17, and C12-N7. The chlorination of SMX mainly occurred at S1, N5, and N7 sites, and went through S-C cleavage, S-N hydrolysis, and desulfonation. The biodegradation of SMX Cl-DBPs in CWs mainly occurred at S1, N5, N7, C8, and C17 sites, and went through processes including oxidation of methyl, hydroxyl and amino groups, desulfonation, decarboxylation, azo bond cleavage, benzene ring cleavage, ß-oxidation of fatty acids under the action of coenzymes. Over half of the SMX Cl-DBPs had greater bioaccumulation potential than their parent SMX, but the environmental risk of SMX Cl-DBPs was effectively reduced through the degradation by CWs.


Assuntos
Desinfecção , Halogenação , Sulfametoxazol , Poluentes Químicos da Água , Áreas Alagadas , Sulfametoxazol/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Desinfetantes/química , Biodegradação Ambiental , Purificação da Água/métodos
9.
Ecotoxicol Environ Saf ; 274: 116209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492482

RESUMO

Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727 µg/L (planted with V. natans) and 61.607 µg/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303 µg/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582 µg/L under 5 mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.


Assuntos
Araceae , Ácidos Cafeicos , Água Potável , Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Halogenação , Araceae/metabolismo , Metais Pesados/análise
10.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791251

RESUMO

Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry. It was shown that at the initial stages, the reactions of cyclization, hydroxylation, chlorination, electrophilic ipso-substitution of bromine atoms with chlorine, and oxidative N-dealkylation occur. Along with known metabolites, a number of novel primary DBPs were tentatively identified based on their elemental compositions and tandem mass spectra. Deep degradation of bromhexine and ambroxol gives twenty-four identified volatile and semi-volatile compounds of six classes, among which trihalomethanes account for more than 50%. The specific class of bromhexine- and ambroxol-related DBPs are bromine-containing haloanilines. Seven of them, including methoxy derivatives, were first discovered in the present study. One more novel class of DBPs associated with bromhexine and ambroxol is represented by halogenated indazoles formed through dealkylation of the primary transformation products containing pyrazoline or tetrahydropyrimidine cycle in their structure.


Assuntos
Ambroxol , Bromoexina , Expectorantes , Halogenação , Poluentes Químicos da Água , Ambroxol/química , Bromoexina/química , Expectorantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cloro/química
11.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675699

RESUMO

In the face of ongoing water pollution challenges, the intricate interplay between dissolved organic matter and disinfectants like chlorine gives rise to potentially harmful disinfection byproducts (DBPs) during water treatment. The exploration of DBP formation originating from amino acids (AA) is a critical focus of global research. Aromatic DBPs, in particular, have garnered considerable attention due to their markedly higher toxicity compared to their aliphatic counterparts. This work seeks to advance the understanding of DBP formation by investigating chlorination disinfection and kinetics using tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) as precursors. Via rigorous experiments, a total of 15 distinct DBPs with accurate molecular structures were successfully identified. The chlorination of all three AAs yielded highly toxic chlorophenylacetonitriles (CPANs), and the disinfectant dosage and pH value of the reaction system potentially influence chlorination kinetics. Notably, Phe exhibited the highest degradation rate compared to Tyr and Trp, at both the CAA:CHOCl ratio of within 1:2 and a wide pH range (6.0 to 9.0). Additionally, a neutral pH environment triggered the maximal reaction rates of the three AAs, while an acidic condition may reduce their reactivity. Overall, this study aims to augment the DBP database and foster a deeper comprehension of the DBP formation and relevant kinetics underlying the chlorination of aromatic AAs.


Assuntos
Aminoácidos Aromáticos , Desinfecção , Halogenação , Purificação da Água , Cinética , Aminoácidos Aromáticos/química , Purificação da Água/métodos , Desinfetantes/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
12.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007303

RESUMO

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Assuntos
Bactérias , Incrustação Biológica , Halogenação , Centrais Nucleares , RNA Ribossômico 16S , Purificação da Água , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Purificação da Água/métodos , Água do Mar/microbiologia , Cloro/química
13.
J Environ Sci (China) ; 144: 199-211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802231

RESUMO

As a strong oxidizing agent, ozone is used in some water treatment facilities for disinfection, taste and odor control, and removal of organic micropollutants. Phenylalanine (Phe) was used as the target amino acid to comprehensively investigate variability of disinfection byproducts (DBPs) formation during chlorine disinfection and residual chlorine conditions subsequent to ozonation. The results showed that subsequent to ozonation, the typical regulated and unregulated DBPs formation potential (DBPsFP), including trichloromethane (TCM), dichloroacetonitrile (DCAN), chloral hydrate (CH), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and trichloroacetamide (TCAcAm) increased substantially, by 2.4, 3.3, 5.6, 1.2, 2.5, and 6.0 times, respectively, compared with only chlorination. Ozonation also significantly increased the DBPs yield under a 2 day simulated residual chlorine condition that mimicked the water distribution system. DBPs formations followed pseudo first order kinetics. The formation rates of DBPs in the first 6 hr were higher for TCM (0.214 hr-1), DCAN (0.244 hr-1), CH (0.105 hr-1), TCAcAm (0.234 hr-1), DCAA (0.375 hr-1) and TCAA (0.190 hr-1) than thereafter. The peak DBPsFP of TCM, DCAN, CH, TCAcAm, DCAA, and TCAA were obtained when that ozonation time was set at 5-15 min. Ozonation times > 30 min increased the mineralization of Phe and decreased the formation of DBPs upon chlorination. Increasing bromine ion (Br-) concentration increased production of bromine- DBPs and decreased chlorine-DBPs formation by 59.3%-92.2% . Higher ozone dosages and slight alkaline favored to reduce DBP formation and cytotoxicity. The ozonation conditions should be optimized for all application purposes including DBPs reduction.


Assuntos
Desinfecção , Halogenação , Ozônio , Fenilalanina , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Desinfecção/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Fenilalanina/química , Desinfetantes/química , Desinfetantes/análise , Cloro/química
14.
J Environ Sci (China) ; 139: 72-83, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105079

RESUMO

Chlorine has been widely used in different advanced oxidation processes (AOPs) for micropollutants removal. In this study, different chlorine-based AOPs, namely medium pressure (MP) UV/chlorine, low pressure (LP) UV/chlorine, and in-situ chlorination, were compared for carbamazepine (CBZ) removal efficiency, energy consumption, and disinfection by-products (DBPs) formation. All three processes could achieve nearly 100% CBZ removal, while the reaction time needed by in-situ chlorination was double the time required by UV/chlorine processes. The energy consumed per magnitude of CBZ removed (EE/O) of MP UV/chlorine was 13 times higher than that of LP UV/chlorine, and relative to that of in-situ chlorination process. Accordingly, MP and LP UV/chlorine processes generated one to two orders of magnitude more hydroxyl radicals (•OH) and reactive chlorine species (RCS) than in-situ chlorination. Besides, RCS were the dominant reactive species, contributing to 78.3%, 75.6%, and 71.6% of CBZ removal in MP, LP UV/chlorine, and in-situ chlorination, respectively. According to the Gibbs free energy barriers between CBZ and RCS/•OH calculated based on density functional theory (DFT), RCS had more reaction routes with CBZ and showed lower energy barrier in the main CBZ degradation pathways like epoxidation and formation of iminostilbene. When applied to secondary wastewater effluent, UV/chlorine and in-situ chlorination produced overall DBPs ranging from 104.77 to 135.41 µg/L. However, the production of chlorate during UV/chlorine processes was 15 times higher than that during in-situ chlorination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Poluentes Químicos da Água/análise , Carbamazepina , Oxirredução , Halogenação , Cloretos , Raios Ultravioleta
15.
Beilstein J Org Chem ; 20: 1580-1589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076287

RESUMO

The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl-I(Ph)-OTFA-AlCl3 and [Cl-I(Ph)][OTFA-AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br-I(Ph)-OAc-AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.

16.
Small ; 19(29): e2208217, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37013462

RESUMO

The scarcity of narrow bandgap donor polymers matched with perylene diimides (PDI)-based nonfullerene acceptors (NFAs) hinders improvement of the power conversion efficiency (PCE) value of organic solar cells (OSCs). Here, it is reported that a narrow bandgap donor polymer PDX, the chlorinated derivative of the famous polymer donor PTB7-Th, blended with PDI-based NFA boosts the PCE value exceeding 10%. The electroluminescent quantum efficiency of PDX-based OSCs is two orders of magnitude higher than that of PTB7-Th-based OSCs;therefore, the nonradiative energy loss is 0.103 eV lower. This is the highest PCE value for OSCs with the lowest energy loss using the blend of PTB7-Th derivatives and PDI-based NFAs as the active layer. Besides, PDX-based devices showed larger phase separation, faster charge mobilities, higher exciton dissociation probability, suppressed charge recombination, elevated charge transfer state, and decreased energetic disorder compared with the PTB7-Th-based OSCs. All these factors contribute to the simultaneously improved short circuit current density, open circuit voltage, and fill factor, thus significantly improving PCE. These results prove that chlorinated conjugated side thienyl groups can efficiently suppress the non-radiative energy loss and highlight the importance of fine-modifying or developing novel narrow bandgap polymers to further elevate the PCE value of PDI-based OSCs.

17.
Environ Sci Technol ; 57(14): 5852-5860, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976858

RESUMO

Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Cloraminas/química , Lisina , Halogenação , Arginina , Cloro/química , Agregados Proteicos , Bases de Schiff , Desinfecção , Aminoácidos/química , Peptídeos , Aldeídos , Nitrilas , Poluentes Químicos da Água/química
18.
Environ Sci Technol ; 57(40): 15232-15242, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37603422

RESUMO

Breakpoint chlorination is prevalent in drinking water and potable reuse water treatment. Breakpoint chlorination enhances the formation of N-nitrosamines through reactions that form nitrosating agents. The most recent study suggests that nitroxyl (HNO) can react with free chlorine (HOCl) to form the nitrosyl chloride (ClNO) nitrosating agent but has not experimentally verified its importance in breakpoint chlorination. This study first assessed the formation of N-nitrosamines from model N-chloro-alkylamine precursors when they were added to a mixture of HOCl and HNO-derived nitrosating agents generated by chlorinating hydroxyurea. Results demonstrated negligible N-nitrosamine formation. Instead, we observed that the interaction of NCl3 with NHCl2 (total Cl2/total N molar ratio = 2.4-3:1) produced an intermediate capable of nitrosating N-chloro-alkylamines to N-nitrosamines at yields 8-fold higher to those observed in NHCl2 treatment alone, within a very short timescale (<3 min). We examined the stoichiometry of the reaction of NCl3 with NHCl2 using a UV-spectrum-based approach. Nitrosyl chloride was proposed as the key intermediate, likely formed alongside the reformation of NHCl2. Further isotopic experiments, byproduct measurements, and kinetic modeling supported the hypotheses. Modeling indicated that the reaction of NCl3 with NHCl2 explained ∼75% of NDMA formation during breakpoint chlorination. Because NCl3 is mainly derived from the reaction of HOCl with NHCl2, controlling NHCl2 (e.g., with additional treatment) is critical for minimizing nitrosamine formation in waters where breakpoint chlorination occurs.

19.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36628463

RESUMO

Aspartame (APM), a dipeptide of aspartic acid (ASP) and phenylalanine (PHE), is a widely used artificial sweetener in beverages. It is unclear whether residual chlorine in tap water can react with APM to form disinfection byproducts (DBPs). Therefore, we investigated the formation of DBPs from the reaction of APM with residual chlorine in authentic tap water. APM and a commercial sweetener (CS) packet containing APM were studied under authentic and simulated tap water conditions. Eight chlorinated products of APM were detected using solid-phase extraction (SPE) and high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS). These new chloro-products were tentatively identified based on accurate masses, isotopic patterns of 35,37Cl, and MS/MS spectra. Furthermore, we identified APM as a precursor to 2,6-dichloro-1,4-benzoquinone (DCBQ). DCBQ significantly increased to 2.3-12 ng/L with the addition of APM or CS in tap waters collected from different locations compared to 1.4-1.8 ng/L in the same tap water samples without sweetener. DCBQ and two of the chlorinated transformation products were identified in cold prepared tea containing APM. DCBQ formation was eliminated when the residual chlorine in tap water was reduced by ascorbic acid or boiling prior to the addition of APM or CS. This study found that eight new DBPs and DCBQ were produced by the reactions of residual chlorine with APM and CS. These findings show an unintended exposure source of emerging DBPs via APM sweetened beverages.

20.
Environ Sci Technol ; 57(1): 150-159, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36512687

RESUMO

Due to the complexities of the interactions between ammonia, chlor(am)ine, and intermediate species such as ONOOH, the radical formation in breakpoint chlorination and the consequential removal of micropollutants remain largely unexplored. In this study, the dominant generation pathway of HO•, as a primary radical in breakpoint chlorination, was examined, and the generations of HO•, reactive chlorine species (RCS), and reactive nitrogen species (RNS) were quantitatively evaluated. A dissolved oxygen (DO)-independent pathway was verified by 18O labeling and contributed over 90% to HO• generation. The commonly believed pathway, the decomposition of ONOOH involving DO, contributed only 7% to HO• formation in breakpoint chlorination. The chlorine to nitrogen (Cl/N) ratio and pH greatly affected the generations and speciations of the reactive species. An optimum Cl/N mass ratio for HO•, Cl2•-, and RNS generations occurred at the breakpoint (i.e., Cl/N mass ratio = 9), whereas excessive free chlorine shifted the radical speciation toward ClO• at Cl/N mass ratios above the breakpoint. Basic conditions inhibited the generations of HO• and RNS but significantly promoted that of ClO•. These findings improved the fundamental understanding of the radical chemistry of breakpoint chlorination, which can be extended to estimate the degradations of micropollutants of known rate constants toward the reactive species with influences from the Cl/N ratio and pH in real-world applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Halogenação , Radical Hidroxila/química , Nitrogênio/química , Oxigênio , Cloretos , Poluentes Químicos da Água/química , Raios Ultravioleta , Cinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa