Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063448

RESUMO

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated solution for online monitoring if sensors can overcome the major barrier associated with long-term stability. Mixed metal oxides have shown excellent stability in environmental conditions with long lasting operational lives. However, these materials have been barely explored for sensing applications. This work presents a proof of concept that demonstrates the applicability of an indirect electroanalytical quantification method of urea. The use of Ti/RuO2-TiO2-SnO2 dimensional stable anode (DSA®) can provide accurate and sensitive quantification of urea in aqueous samples exploiting the excellent catalytic properties of DSA® on the electrogeneration of active chlorine species. The cathodic reduction of accumulated HClO/ClO- from anodic electrogeneration presented a direct relationship with urea concentration. This novel method can allow urea quantification with a competitive LOD of 1.83 × 10-6 mol L-1 within a linear range of 6.66 × 10-6 to 3.33 × 10-4 mol L-1 of urea concentration.

2.
Environ Sci Pollut Res Int ; 30(12): 32600-32613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464744

RESUMO

A two-step electrochemical process including electrooxidation (EO) and electrocoagulation (EC) was proposed for the tertiary treatment of bio-treated landfill leachate (BTLL). The operating conditions of sole EO and EC technology were optimized via batch tests. Batch tests indicate that EO displayed superior removal efficiency towards color (89%) and UV254 (64%) under optimal experimental conditions. EC with the electrode combinations Fe-Fe-Fe-Fe (four plates, anode-cathode-anode-cathode) performed better than the other electrode combinations (Fe-Al-Fe-Al, Al-Fe-Al-Fe, Al-Al-Al-Al) and showed excellent removal efficiency towards COD (60%) and color (85%). In continuous-flow tests of 13 h, compared to sequential EC-EO process, the sequential EO-EC process was more effective than the sequential EC-EO process in reducing organic matters (COD, TOC) and residual chlorine. The sequential EO-EC process could remove 50% COD, 55% TOC, 72% UV254, and 96% color. The average concentration of residual chlorine in the final effluent of EO-EC process (147 mg/L) was significantly lower than that of EC-EO process (463 mg/L). UV-vis and GC-MS analyses indicate that the BTLL mainly contained humic acid and fulvic acid-like substances with unsaturated bonds. Conjugated unsaturated organics could be degraded into organic of small molecular weight after the sequential EO-EC process. EEM spectroscopic analysis revealed that soluble microbial byproducts became the predominant organics in the final effluent. This work verifies the synergism between EO and EC and provides some insights into the removal and degradation performance of organic substances in BTLL during the sequential EO-EC treatment.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Cloro/análise , Eletrocoagulação/métodos , Substâncias Húmicas/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa