Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
J Biol Chem ; 300(8): 107565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002675

RESUMO

Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.


Assuntos
Citrato (si)-Sintase , Ciclo do Ácido Cítrico , Ácido Cítrico , Mitocôndrias , Proteínas de Protozoários , Toxoplasma , Toxoplasma/enzimologia , Toxoplasma/metabolismo , Toxoplasma/genética , Mitocôndrias/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/genética , Ácido Cítrico/metabolismo , Camundongos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/genética
2.
EMBO J ; 40(24): e108542, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612526

RESUMO

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Assuntos
Carbono/metabolismo , Toxina da Cólera/metabolismo , Citrato (si)-Sintase/metabolismo , RNA Bacteriano/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Testes Genéticos , Fases de Leitura Aberta , Fenótipo , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
3.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38130235

RESUMO

Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Resposta ao Choque Térmico
4.
Exp Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593224

RESUMO

The asymptote (critical power; CP) and curvature constant (W') of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle mitochondrial content and respiratory function is not known. Fifteen males (peak O2 uptake, 52.2 ± 8.7 mL kg-1 min-1; peak work rate, 366 ± 40 W; and gas exchange threshold, 162 ± 41 W) performed three to five constant-load tests to task failure for the determination of CP (246 ± 44 W) and W' (18.6 ± 4.1 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis to determine citrate synthase (CS) activity, as a marker of mitochondrial content, and the ADP-stimulated respiration (P) and maximal electron transfer (E) through mitochondrial complexes (C) I-IV. The CP was positively correlated with CS activity (absolute CP, r = 0.881, P < 0.001; relative CP, r = 0.751, P = 0.001). The W' was not correlated with CS activity (P > 0.05). Relative CP was positively correlated with mass-corrected CI + IIE (r = 0.659, P = 0.038), with absolute CP being inversely correlated with CS activity-corrected CIVE (r = -0.701, P = 0.024). Relative W' was positively correlated with CS activity-corrected CI + IIP (r = 0.713, P = 0.021) and the phosphorylation control ratio (r = 0.661, P = 0.038). There were no further correlations between CP or W' and mitochondrial respiratory variables. These findings support the assertion that skeletal muscle mitochondrial oxidative capacity is positively associated with CP and that this relationship is strongly determined by mitochondrial content.

5.
J Exp Biol ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445511

RESUMO

The energetic costs to generate calcium carbonate skeletons and shells in marine organisms remain largely speculative due to the scarcity of empirical data. However, this information is critical to estimate energetic limitations of marine calcifiers that can explain their sensitivities to changes in sea water carbonate chemistry in past, present and future marine systems. The cost of calcification was evaluated using larval stages of the purple sea urchin, Strongylocentrotus purpuratus. We developed a skeleton re-mineralization assay, in which the skeleton was dissolved in live larvae followed by a re-mineralization over a few days. During skeleton re-mineralization, energetic costs were estimated through the measurement of key metabolic parameters including whole animal metabolic rates, citrate synthase (CS) enzyme activities and mRNA expression as well as mitochondrial densities in the calcifying primary mesenchyme cells (PMCs). Minor increases in a CS activity and a 10-15% increase in mitochondrial densities in PMCs were observed in re-mineralizing larvae as compared to control larvae. Re-mineralization under three different pH conditions (pH 8.1, pH 7.6 and pH 7.1) decreased with decreasing pH accompanied by pronounced increases in CS expression levels and increased mitochondrial densities in PMCs at pH 7.6. Despite a prominent increase in mitochondrial density of primary mesenchyme cells, particularly in the calcifying cohort of this cell type, this work demonstrated a low overall metabolic response to increased mineralization rates on the whole animal level under both, high and low pH conditions. We conclude that calcification in sea urchin larvae is compromised under low pH conditions, associated with low energetic efforts to fuel compensatory processes.

6.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338701

RESUMO

The function of natural autoantibodies (nAAbs) in maintaining immunological tolerance has been comprehensively explained; however, their function in pregnant patients dealing with autoimmune diseases has not been thoroughly investigated. As Hashimoto's thyroiditis (HT) is the predominant organ-specific autoimmune condition of women of childbearing age, this study's objective was to evaluate IgM and IgG nAAbs targeting mitochondrial citrate synthase (CS) and heat shock proteins (Hsp60 and Hsp70) in women diagnosed with HT who were pregnant (HTP). Serum samples collected from HTP and healthy pregnant (HP) women in the first and third trimesters were tested using in-house-developed enzyme-linked immunosorbent assays (ELISAs). Our findings indicate the stability of nAAbs against CS and Hsps throughout the pregnancies of both healthy women and those with HT. However, during both trimesters, HTP patients displayed elevated levels of IgM isotype nAAbs against Hsp60 and Hsp70 compared to HP women, suggesting a regulatory role of IgM nAAbs during the pregnancies of patients with HT. Nonetheless, levels of IgG isotype nAAbs against Hsps were lower solely in the third trimester among HTP patients, resulting in a higher IgM/IgG ratio, which indicates their importance in alterations of the nAAb network during pregnancy in patients with HT.


Assuntos
Doenças Autoimunes , Doença de Hashimoto , Gravidez , Humanos , Feminino , Autoanticorpos , Gestantes , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP70 , Imunoglobulina G , Chaperonina 60 , Imunoglobulina M
7.
Plant J ; 109(1): 261-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709689

RESUMO

The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin-Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma , Acetatos/metabolismo , Acetilação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Lisina/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
8.
J Cell Biochem ; 124(9): 1404-1422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566640

RESUMO

In this study, we have screened a large number of Food and Drug Administration-approved compounds for novel anti-leishmanial molecules targeting the citrate synthase enzyme of the parasite. Based on their docking and molecular dynamic simulation statistics, five compounds were selected. These compounds followed Lipinski's rule of five. Additionally, in vitro, antileishmanial and cytotoxicity studies were performed. The three compounds, Abemaciclib, Bazedoxifene, and Vorapaxar, had shown effective anti-leishmanial activities with IC50 values of 0.92 ± 0.02, 0.65 ± 0.09, and 6.1 ± 0.91 against Leishmania donovani promastigote and with EC50 values of 1.52 ± 0.37, 2.11 ± 0.38, 10.4 ± 1.27 against intramacrophagic amastigote without significantly harming macrophage cells. Among them, from in silico and antileishmanial activities studies, Abemaciclib had been selected based on their less binding energy, good antileishmanial activities, and also a significant difference in their binding energy with human citrate synthase for cell death mechanistic studies using flow cytometry and a DNA fragmentation assay. The action of this compound resulted in an increased reactive oxygen species production, depolarization of mitochondrial membrane potential, DNA damage, and an increase in the sub-G1 cell population. These properties are the hallmarks of apoptosis which were further confirmed by apoptotic assay. Based on the above result, this anticancer compound Abemaciclib could be employed as a potential treatment option for leishmaniasis after further confirmation.


Assuntos
Leishmania donovani , Estados Unidos , Humanos , Preparações Farmacêuticas , Citrato (si)-Sintase , Aminopiridinas
9.
Plant Mol Biol ; 111(4-5): 429-438, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36884198

RESUMO

Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.


Assuntos
Ácido Oxaloacético , Rodófitas , Citrato (si)-Sintase/química , Acetilcoenzima A , Oxaloacetatos
10.
Mol Cell Biochem ; 478(8): 1669-1687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36495372

RESUMO

The sodium dependent SLC13 family transporters comprise of five genes SLC13A1, SLC13A2 (NaDC1), SLC13A3 (NaDC3), SLC13A4 and SLC13A5 (NaCT). Among them, NaDC1, NaDC3 and NaCT are sodium dependent transporters belonging to family of dicarboxylates (succinate, malate, α-ketoglutarate) and tricarboxylates (citrate). The mouse and the human NaCT structures have still not been crystallized, therefore structural information is taken from the related bacterial transporter of VcINDY. Citrate in the cytosol works as a precursor for the fatty acid synthesis, cholesterol, and low-density lipoproteins. The excess citrate from the matrix is translocated to the cytosol for fatty acid synthesis through these transporters and thus controls the energy balance by downregulating the glycolysis, tricarboxylic acid (TCA), and fatty acid breakdown. These transporters play an important role in regulating various metabolic diseases including cancer, diabetes, obesity, fatty liver diseases and CNS disorders. These di and tricarboxylate transporters are emerging as new targets for metabolic disorders such as obesity and diabetes. The mutation in the function of the NaCT causes several neurological diseases including neonatal epilepsy and impaired brain development whereas mutation of genes coding for citrate transport present in the liver may provide positive effect. Therefore, continued efforts from the earlier work on citrate transporters are required for the development of citrate inhibitors. This review discusses the structure, function, and regulation of the NaCT transporter. The review also highlights citrate role in diagnosing diseases such as cancer, diabetes, fatty liver, and diabetes. The therapeutic perspective of synthetic inhibitors against NaCT transporters is succinctly summarized.


Assuntos
Doenças Metabólicas , Simportadores , Animais , Camundongos , Humanos , Sódio , Citratos , Ácido Cítrico/metabolismo , Proteínas de Membrana Transportadoras , Ácidos Tricarboxílicos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Obesidade , Ácidos Graxos , Simportadores/genética , Transportadores de Sulfato
11.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1225-1232, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36350374

RESUMO

The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.


Assuntos
Suicídio , Feminino , Humanos , Masculino , Suicídio/psicologia , Giro do Cíngulo/patologia , Citrato (si)-Sintase , Concentração Alcoólica no Sangue , Encéfalo/patologia , Córtex Pré-Frontal/patologia
12.
Proc Natl Acad Sci U S A ; 117(13): 7347-7354, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179679

RESUMO

Weight loss by ketogenic diet (KD) has gained popularity in management of nonalcoholic fatty liver disease (NAFLD). KD rapidly reverses NAFLD and insulin resistance despite increasing circulating nonesterified fatty acids (NEFA), the main substrate for synthesis of intrahepatic triglycerides (IHTG). To explore the underlying mechanism, we quantified hepatic mitochondrial fluxes and their regulators in humans by using positional isotopomer NMR tracer analysis. Ten overweight/obese subjects received stable isotope infusions of: [D7]glucose, [13C4]ß-hydroxybutyrate and [3-13C]lactate before and after a 6-d KD. IHTG was determined by proton magnetic resonance spectroscopy (1H-MRS). The KD diet decreased IHTG by 31% in the face of a 3% decrease in body weight and decreased hepatic insulin resistance (-58%) despite an increase in NEFA concentrations (+35%). These changes were attributed to increased net hydrolysis of IHTG and partitioning of the resulting fatty acids toward ketogenesis (+232%) due to reductions in serum insulin concentrations (-53%) and hepatic citrate synthase flux (-38%), respectively. The former was attributed to decreased hepatic insulin resistance and the latter to increased hepatic mitochondrial redox state (+167%) and decreased plasma leptin (-45%) and triiodothyronine (-21%) concentrations. These data demonstrate heretofore undescribed adaptations underlying the reversal of NAFLD by KD: That is, markedly altered hepatic mitochondrial fluxes and redox state to promote ketogenesis rather than synthesis of IHTG.


Assuntos
Dieta Cetogênica/métodos , Fígado Gorduroso/dietoterapia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Composição Corporal , Citrato (si)-Sintase/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Obesidade/metabolismo , Sobrepeso/patologia , Oxirredução , Piruvato Carboxilase/metabolismo , Triglicerídeos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36379380

RESUMO

Hypoxia poses a significant energetic challenge and most species exhibit metabolic remodelling when exposed to prolonged hypoxia. One component of this remodelling is mitochondrial biogenesis/mitophagy, which alter mitochondrial abundance and helps to adjust metabolic throughput to match changes in energy demands in hypoxia. However, how acute hypoxia impacts mitochondrial abundance in hypoxia-tolerant species is poorly understood. To help address this gap, we exposed hypoxia-tolerant naked mole-rats to 3 h of normoxia or acute hypoxia (5% O2) and measured changes in mitochondrial abundance using two well-established markers: citrate synthase (CS) enzyme activity and mitochondrial DNA (mtDNA) abundance. We found that neither marker changed with hypoxia in brain, liver, or kidney, suggesting that mitochondrial biogenesis is not initiated during acute hypoxia in these tissues. Conversely in skeletal muscle, the ratio of CS activity to total protein decreased 50% with hypoxia. However, this change was likely driven by an increase in soluble protein density in hypoxia because CS activity was unchanged relative to wet tissue weight and the mtDNA copy number was unchanged. To confirm this, we examined skeletal muscle mitochondria using transmission electron microscopy and found no change in mitochondrial volume density. Taken together with previous studies of mitochondrial respiratory function, our present findings suggest that naked mole-rats primarily rely on tissue-specific functional remodelling of metabolic pathways and mitochondrial respiratory throughput, and not physical changes in mitochondrial number or volume, to adjust to short-term hypoxic exposure.


Assuntos
Hipóxia , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Ratos-Toupeira/metabolismo
14.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203456

RESUMO

In some non-mammalian eggs, the fusion of one egg and multiple sperm (polyspermy) induces a robust rise in intracellular calcium ion (Ca2+) concentration due to a shortage of inducers carried by a single sperm. Instead, one of the sperm nuclei is selected inside the egg for normal embryogenesis. Polyspermy also occurs during the in vitro fertilization of human eggs; however, the fate of such eggs is still under debate. Hence, the relationship between polyspermy and repetitive Ca2+ increases (Ca2+ oscillation) in mammals remains unknown. To address this issue, we used mouse sperm lacking extramitochondrial citrate synthase (eCS), which functions as a Ca2+ oscillation inducer; its lack causes retarded Ca2+ oscillation initiation (eCs-KO sperm). Elevated sperm concentrations normalize Ca2+ oscillation initiation. As expected, eCS deficiency enhanced polyspermy in both zona pellucida (ZP)-free and ZP-intact eggs despite producing the next generation of eCs-KO males. In conclusion, similarly to non-mammalian eggs, mouse eggs may develop normally under polyspermy conditions caused by problematic Ca2+ oscillation.


Assuntos
Sinalização do Cálcio , Sêmen , Humanos , Animais , Masculino , Camundongos , Causalidade , Núcleo Celular , Citrato (si)-Sintase , Mamíferos
15.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175862

RESUMO

This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Exercício Físico , Biomarcadores/metabolismo , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo
16.
Molecules ; 28(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37764443

RESUMO

In fungi, the methylcitrate cycle converts cytotoxic propionyl-coenzyme A (CoA) to pyruvate, which enters gluconeogenesis. The glyoxylate cycle converts acetyl-CoA to succinate, which enters gluconeogenesis. The tricarboxylic acid cycle is a central carbon metabolic pathway that connects the methylcitrate cycle, the glyoxylate cycle, and other metabolisms for lipids, carbohydrates, and amino acids. Fungal citrate synthase and 2-methylcitrate synthase as well as isocitrate lyase and 2-methylisocitrate lyase, each evolved from a common ancestral protein. Impairment of the methylcitrate cycle leads to the accumulation of toxic intermediates such as propionyl-CoA, 2-methylcitrate, and 2-methylisocitrate in fungal cells, which in turn inhibits the activity of many enzymes such as dehydrogenases and remodels cellular carbon metabolic processes. The methylcitrate cycle and the glyoxylate cycle synergistically regulate carbon source utilization as well as fungal growth, development, and pathogenic process in pathogenic fungi.


Assuntos
Ciclo do Ácido Cítrico , Fungos , Acetilcoenzima A , Fungos/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
17.
J Proteome Res ; 21(10): 2385-2396, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074008

RESUMO

It is generally believed that vascular endothelial cells (VECs) rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under both normoxic and hypoxic conditions. However, the metabolic pattern of human umbilical vein endothelial cells (HUVECs) under extreme ischemia (hypoxia and nutrient deprivation) needs to be elucidated. We initiated a lethal ischemic model of HUVECs, performed proteomics and bioinformatics, and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs displayed extensive aerobic respiration, including upregulation of the TCA cycle and mitochondrial respiratory chain in mitochondria and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced while the cell viability was decreased through the citrate synthase pathway when substrates of the TCA cycle (acetate and/or pyruvate) were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA and/or avidin) were applied. The inconsistency of the TCA cycle level and cell viability suggested that the extensive TCA cycle can keep cells alive yet generate toxic substances that reduce cell viability. The data revealed that HUVECs depend on "ischemic TCA cycle" instead of glycolysis to keep cells alive under lethal ischemic conditions, but consideration must be given to relieve cell injury.


Assuntos
Ciclo do Ácido Cítrico , Células Endoteliais da Veia Umbilical Humana , Isquemia , Avidina , Citrato (si)-Sintase , Ciclo do Ácido Cítrico/fisiologia , Coenzima A , Humanos , Hipóxia , Ácido Pirúvico , Ácidos Tricarboxílicos
18.
Plant J ; 105(6): 1449-1458, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280178

RESUMO

The tricarboxylic acid (TCA) cycle is one of the most important metabolic pathways in nature. Oxygenic photoautotrophic bacteria, cyanobacteria, have an unusual TCA cycle. The TCA cycle in cyanobacteria contains two unique enzymes that are not part of the TCA cycle in other organisms. In recent years, sustainable metabolite production from carbon dioxide using cyanobacteria has been looked at as a means to reduce the environmental burden of this gas. Among cyanobacteria, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) is an optimal host for sustainable metabolite production. Recently, metabolite production using the TCA cycle in Synechocystis 6803 has been carried out. Previous studies revealed that the branch point of the oxidative and reductive TCA cycles, oxaloacetate metabolism, plays a key role in metabolite production. However, the biochemical mechanisms regulating oxaloacetate metabolism in Synechocystis 6803 are poorly understood. Concentrations of oxaloacetate in Synechocystis 6803 are extremely low, such that in vivo analysis of oxaloacetate metabolism does not seem realistic. Therefore, using purified enzymes, we reconstituted oxaloacetate metabolism in Synechocystis 6803 in vitro to reveal the regulatory mechanisms involved. Reconstitution of oxaloacetate metabolism revealed that pH, Mg2+ and phosphoenolpyruvate are important factors affecting the conversion of oxaloacetate in the TCA cycle. Biochemical analyses of the enzymes involved in oxaloacetate metabolism in this and previous studies revealed the biochemical mechanisms underlying the effects of these factors on oxaloacetate conversion. In addition, we clarified the function of two l-malate dehydrogenase isozymes in oxaloacetate metabolism. These findings serve as a basis for various applications of the cyanobacterial TCA cycle.


Assuntos
Ciclo do Ácido Cítrico , Ácido Oxaloacético/metabolismo , Synechocystis/metabolismo , Fumaratos/metabolismo , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/metabolismo , Malato Desidrogenase/metabolismo , Fosfoenolpiruvato/metabolismo , Temperatura
19.
Biochem Biophys Res Commun ; 612: 134-140, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525197

RESUMO

A/J mouse is a typical animal model of age-related deafness. Previous studies have shown that the mice suffer from progressive hearing loss and degeneration of cochlear cells, and a variation of H55 N in citrate synthase (CS) causes about 40% the hearing loss. CS is a key enzyme in the tricarboxylic acid cycle, which is transported from cytoplasm to mitochondria after synthesis, sorted by the mitochondrial targeting sequence (MTS). To explore the mechanism of CS (H55 N) variation in affecting its function, HEI-OC1 cells were infected with lentivirus particles to express CS-Flag or CS(H55 N)-Flag. The results showed that H55 N variation in CS, as purified by co-immunoprecipitation, decreased the enzyme activity by about 50%. Confocal microscope co-localization indicated that the CS (H55 N) variation led to a decrement in its mitochondrial content. Western blot also showed the amount of CS(H55 N)-Flag was more than that of CS(WT)-Flag in the cytosol. The results suggest H55 N variation in CS lead to decrement of its enzyme activity and targeting transport to mitochondria. We therefore conclude that decrement in CS activity and mitochondrial delivery contributes to the degeneration of cochlear cells and thus the hearing loss in A/J mice.


Assuntos
Perda Auditiva , Mitocôndrias , Animais , Citrato (si)-Sintase , Cóclea , Camundongos
20.
Microb Pathog ; 173(Pt B): 105890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410583

RESUMO

Many studies have confirmed that virus infection cause changes in the expression level and post-translational modifications of tricarboxylic acid cycle (TCA) enzymes. In a previous study, we found that the acetylation level of lysine 336 of Bombyx mori citrate synthase (BmCS) was remarkably unregulated after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. In the present study, we found that BmN cells infected with BmNPV could up-regulate BmCS transient expression and promote the acetylation modification of BmCS. Transient expression vectors for over-expression of wild-type Bmcs and K336 acetylation mimic mutant (K336Q) were constructed to analyze enzyme activity, revealing that acetylation of K336 significantly reduced its activity. The obtained results indicated that BmCS knock-down or K336 acetylation similarly suppressed BmN cellular ATP production and mitochondrial membrane potential. Furthermore, the acetylation of K336 and the reduction of BmCS expression contributed to weakening the replication lever of the BmNPV proliferation and the generation of progeny viruses. In sum, our study on the single lysine 336 acetylation and knock-down of Bmcs revealed the potential mechanism for inhibiting the proliferation of BmNPV, which may provide novel insights for the development of antiviral strategies.


Assuntos
Bombyx , Lisina , Animais , Acetilação , Citrato (si)-Sintase/genética , Metabolismo Energético , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa