RESUMO
Clay minerals are implicated in the retention of biomolecules within organic matter in many soil environments. Spectroscopic studies have proposed several mechanisms for biomolecule adsorption on clays. Here, we employ molecular dynamics simulations to investigate these mechanisms in hydrated adsorbate conformations of montmorillonite, a smectite-type clay, with ten biomolecules of varying chemistry and structure, including sugars related to cellulose and hemicellulose, lignin-related phenolic acid, and amino acids with different functional groups. Our molecular modeling captures biomolecule-clay and biomolecule-biomolecule interactions that dictate selectivity and competition in adsorption retention and interlayer nanopore trapping, which we determine experimentally by NMR and X-ray diffraction, respectively. Specific adsorbate structures are important in facilitating the electrostatic attraction and Van der Waals energies underlying the hierarchy in biomolecule adsorption. Stabilized by a network of direct and water-bridged hydrogen bonds, favorable electrostatic interactions drive this hierarchy whereby amino acids with positively charged side chains are preferentially adsorbed on the negatively charged clay surface compared to the sugars and carboxylate-rich aromatics and amino acids. With divalent metal cations, our model adsorbate conformations illustrate hydrated metal cation bridging of carboxylate-containing biomolecules to the clay surface, thus explaining divalent cation-promoted adsorption from our experimental data. Adsorption experiments with a mixture of biomolecules reveal selective inhibition in biomolecule adsorption, which our molecular modeling attributes to electrostatic biomolecule-biomolecule pairing that is more energetically favorable than the biomolecule-clay complex. In sum, our findings highlight chemical and structural features that can inform hypotheses for predicting biomolecule adsorption at water-clay interfaces.
Assuntos
Simulação de Dinâmica Molecular , Água , Argila , Adsorção , Água/química , Eletricidade Estática , Aminoácidos , AçúcaresRESUMO
Uncontrollable dendrite growth and corrosion induced by reactive water molecules and sulfate ions (SO42-) seriously hindered the practical application of aqueous zinc ion batteries (AZIBs). Here we construct artificial solid electrolyte interfaces (SEIs) realized by sodium and calcium bentonite with a layered structure anchored to anodes (NB@Zn and CB@Zn). This artificial SEI layer functioning as a protective coating to isolate activated water molecules, provides high-speed transport channels for Zn2+, and serves as an ionic sieve to repel negatively charged anions while attracting positively charged cations. The theoretical results show that the bentonite electrodes exhibit a higher binding energy for Zn2+. This demonstrates that the bentonite protective layer enhances the Zn-ion deposition kinetics. Consequently, the NB@Zn//MnO2 and CB@Zn//MnO2 full-battery capacities are 96.7 and 70.4 mAh g-1 at 2.0 A g-1 after 1000 cycles, respectively. This study aims to stabilize Zn anodes and improve the electrochemical performance of AZIBs by ion-selection sieving.
RESUMO
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologiaRESUMO
BACKGROUND: Tomato (Lycopersicon esculentum), a valuable economic crop worldwide, often goes to waste due to improper packaging and handling. In the present study, three types of low-density polyethylene nanocomposite films containing 3% clay (Closite 20A), 3% TiO2 nanoparticles, and their combination were synthesized using melt blending method, and evaluated on the quality parameters of tomato fruit during 42 days of storage at 4 °C. RESULTS: Transmission electron microscopy confirmed the degree of dispersion and exfoliation of the nanoparticles. The TiO2/clay-nanocomposite films exhibited notable enhancements in Young's modulus and tensile strength compared to conventional films. The addition of clay and TiO2 nanoparticles resulted in reduced permeability to CO2, O2, and water vapor. Fruits packed with clay/TiO2 nanocomposite films showed decreased ethylene production, mitigated weight loss, and maintained pH, titratable acidity, total soluble solids, and firmness. Furthermore, clay/TiO2 nanocomposite films enhanced membrane stability, decreased membrane lipid peroxidation, and enhanced catalase and ascorbate peroxidase enzyme activity in fruits. CONCLUSIONS: The relatively good exfoliation of clay nanoparticles and the proper dispersion of TiO2 nanoparticles, which were confirmed by TEM, led to an increase in mechanical and physical properties in the Clay/TiO2 nanocomposite. This film displayed more potential in maintaining the quality properties of tomato fruit during cold storage. Therefore, this film can be considered a practical solution for minimizing pathogen risks and contamination, and enhancing the overall quality of tomato fruit.
Assuntos
Argila , Temperatura Baixa , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Solanum lycopersicum , Titânio , Solanum lycopersicum/fisiologia , Titânio/química , Argila/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Nanocompostos/química , Silicatos de Alumínio/químicaRESUMO
Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales.
Assuntos
Carbono , Solo , Solo/química , Minerais , Sequestro de Carbono , África SubsaarianaRESUMO
Understanding the mechanisms of soil organic carbon (SOC) sequestration in forests is vital to ecosystem carbon budgeting and helps gain insight in the functioning and sustainable management of world forests. An explicit knowledge of the mechanisms driving global SOC sequestration in forests is still lacking because of the complex interplays between climate, soil, and forest type in influencing SOC pool size and stability. Based on a synthesis of 1179 observations from 292 studies across global forests, we quantified the relative importance of climate, soil property, and forest type on total SOC content and the specific contents of physical (particulate vs. mineral-associated SOC) and chemical (labile vs. recalcitrant SOC) pools in upper 10 cm mineral soils, as well as SOC stock in the O horizons. The variability in the total SOC content of the mineral soils was better explained by climate (47%-60%) and soil factors (26%-50%) than by NPP (10%-20%). The total SOC content and contents of particulate (POC) and recalcitrant SOC (ROC) of the mineral soils all decreased with increasing mean annual temperature because SOC decomposition overrides the C replenishment under warmer climate. The content of mineral-associated organic carbon (MAOC) was influenced by temperature, which directly affected microbial activity. Additionally, the presence of clay and iron oxides physically protected SOC by forming MAOC. The SOC stock in the O horizons was larger in the temperate zone and Mediterranean regions than in the boreal and sub/tropical zones. Mixed forests had 64% larger SOC pools than either broadleaf or coniferous forests, because of (i) higher productivity and (ii) litter input from different tree species resulting in diversification of molecular composition of SOC and microbial community. While climate, soil, and forest type jointly determine the formation and stability of SOC, climate predominantly controls the global patterns of SOC pools in forest ecosystems.
Assuntos
Sequestro de Carbono , Carbono , Florestas , Solo , Solo/química , Carbono/análise , Clima , Microbiologia do SoloRESUMO
Formation of mineral-associated organic matter (MAOM) supports the accumulation and stabilization of carbon (C) in soil, and thus, is a key factor in the global C cycle. Little is known about the interplay of mineral type, land use and management intensity in MAOM formation, especially on subdecadal time scales. We exposed mineral containers with goethite or illite, the most abundant iron oxide and phyllosilicate clay in temperate soils, for 5 years in topsoils of 150 forest and 150 grassland sites in three regions across Germany. Results show that irrespective of land use and management intensity, more C accumulated on goethite than illite (on average 0.23 ± 0.10 and 0.06 ± 0.03 mg m-2 mineral surface respectively). Carbon accumulation across regions was consistently higher in coniferous forests than in deciduous forests and grasslands. Structural equation models further showed that thinning and harvesting reduced MAOM formation in forests. Formation of MAOM in grasslands was not affected by grazing. Fertilization had opposite effects on MAOM formation, with the positive effect being mediated by enhanced plant productivity and the negative effect by reduced plant species richness. This highlights the caveat of applying fertilizers as a strategy to increase soil C stocks in temperate grasslands. Overall, we demonstrate that the rate and amount of MAOM formation in soil is primarily driven by mineral type, and can be modulated by land use and management intensity even on subdecadal time scales. Our results suggest that temperate soils dominated by oxides have a higher capacity to accumulate and store C than those dominated by phyllosilicate clays, even under circumneutral pH conditions. Therefore, adopting land use and management practices that increase C inputs into oxide-rich soils that are under their capacity to store C may offer great potential to enhance near-term soil C sequestration.
Assuntos
Compostos de Ferro , Minerais , Solo , Solo/química , Florestas , Carbono/químicaRESUMO
Plant metabolites significantly affect soil nitrogen (N) cycling, but their influence on nitrous oxide (N2O) emissions has not been quantitatively analyzed on a global scale. We conduct a comprehensive meta-analysis of 173 observations from 42 articles to evaluate global patterns of and principal factors controlling N2O emissions in the presence of root exudates and extracts. Overall, plant metabolites promoted soil N2O emissions by about 10%. However, the effects of plant metabolites on N2O emissions from soils varied with experimental conditions and properties of both metabolites and soils. Primary metabolites, such as sugars, amino acids, and organic acids, strongly stimulated soil N2O emissions, by an average of 79%, while secondary metabolites, such as phenolics, terpenoids, and flavonoids, often characterized as both biological nitrification inhibitors (BNIs) and biological denitrification inhibitors (BDIs), reduced soil N2O emissions by an average of 41%. The emission mitigation effects of BNIs/BDIs were closely associated with soil texture and pH, increasing with increasing soil clay content and soil pH on acidic and neutral soils, and with decreasing soil pH on alkaline soils. We furthermore present soil incubation experiments that show that three secondary metabolite types act as BNIs to reduce N2O emissions by 32%-45%, while three primary metabolite classes possess a stimulatory effect of 56%-63%, confirming the results of the meta-analysis. Our results highlight the potential role and application range of specific secondary metabolites in biomitigation of global N2O emissions and provide new biological parameters for N2O emission models that should help improve the accuracy of model predictions.
Assuntos
Óxido Nitroso , Plantas , Solo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Plantas/metabolismo , Plantas/química , Nitrificação , DesnitrificaçãoRESUMO
In order to improve the structural properties of clays and composites of powdered spirulina, clay, nanosilica, hydroxyapatite, TiO2 and ZnO were used as an additive for mechanical processing. As a result, composites with natural nanostructured materials (NNM) are prepared with improved structural properties and bioactivity. The mixtures based on NNM with crystalline kaolinite, clays and admixtures were processed in a knife mill. The materials were characterized using FTIR spectroscopy, nitrogen adsorption and desorption, SEM release of bioactive components (anthocyanin 0,004-0,07â mg/g; chlorophyll 20-29â mg/g), composite toxicity level (below 25%), particle size measurement and surface charge density, zeta potential. Adsorption enthalpies during the formation of an intermolecular complex during the interactions of an anthocyanin molecule with the appropriate component of the composite were also calculated. There are regularities in the characteristics depending on the type of NNM, particle morphology and textural features of solids. The morphological and structural properties of the components changed slighty in the blends because the processing was conducted under relatively low mechanical stress. The morphological, textural and structural characteristics of the composites as well as the transformation to a nanostructured state, assume great bioactive activity of the composites, interesting for practical applications in medicine and cosmetics.
RESUMO
The enhanced emission properties of several cationic dye molecules on the clay surface established as a result of the strong electrostatic interaction and associated molecular flattening leading to either the suppression of non-radiative deactivation processes or the improvement of radiative deactivation processes has been verified, and it is known as surface-fixation induced emission (S-FIE). Here, the differences in the S-FIE properties as well as the self-fluorescence quenching behavior of the dimidium and propidium dyes were compared. Propidium differs from dimidium by the substitution of a propyl (diethyl methylammonium) group at the 5th position instead of the methyl group in dimidium. So, the differences induced by this substitution, which is not even in conjugation with the chromophore part of the dye molecule show a significant impact on the adsorption strength, S-FIE properties, and self-fluorescence quenching behavior. In propidium and dimidium, the suppression of knr was the key factor for emission enhancement on the clay surface. Interestingly, the alkylammonium cation group in the Propidium helped for better adsorption strength as well as to reduce the self-fluorescence quenching behavior on the clay surface as compared to the dimidium. Since the trialkylammonium cation was not in conjugation with the core structure of the molecule and located at a specific distance, it did not interrupt the flattening of the molecule on the clay surface. These results could be beneficial in the construction of efficient photochemical reaction systems, where the molecule having low adsorption strengths can be modified by alkyl ammonium cations, which will not affect molecular planarization.
RESUMO
Soil minerals influence the biogeochemical cycles of fluoride (F) and phosphorus (P), impacting soil quality and bioavailability to plants. However, the cooperative mechanisms of soil minerals in governing F and P in the soil environment remain a grand challenge. Here, we reveal the essential role of a typical soil mineral, montmorillonite (Mt), in the cycling and fate of F and P. The results show that the enrichment of metal sites on the Mt surface promotes the mineralization of F to the fluorapatite (FAP) phase, thereby remaining stable in the environment, simultaneously promoting P release. This differential behavior leads to a reduction in the level of F pollution and an enhancement of P availability. Moreover, solid-state NMR and HRTEM observations confirm the existence of metastable F-Ca-F intermediates, emphasizing the pivotal role of Mt surface sites in regulating crystallization pathways and crystal growth of FAP. Furthermore, the in situ atomic force microscopy and theoretical calculations reveal molecular fractionation mechanisms and adsorption processes. It is observed that a competitive relationship exists between F and P at the Mt interface, highlighting the thermodynamically advantageous pathway of forming metastable intermediates, thereby governing the activity of F and P in the soil environment at a molecular level. This work paves the way to reveal the important role of clay minerals as a mineralization matrix for soil quality management and offers new strategies for modulating F and P dynamics in soil ecosystems.
Assuntos
Fluoretos , Fósforo , Fluoretos/química , Fósforo/química , Solo/química , Argila/química , Apatitas/química , Bentonita/química , Adsorção , Minerais/química , Silicatos de Alumínio/químicaRESUMO
Phototransformation is a key process affecting the fate of many antibiotics in the environment, but little is known about whether their photoproducts exert selective pressure on bacteria by inducing antibiotic resistance genes (ARGs). Here, we examined the expression of tetracycline resistance gene tet(M) of a fluorescent Escherichia coli whole-cell bioreporter influenced by the phototransformation of tetracycline. The presence of suspended smectite clay (montmorillonite or hectorite, 1.75 g/L) or dissolved humic substance (Pahokee Peat humic acid or Pahokee peat fulvic acid, 10 mg C/L) in aqueous solutions markedly facilitated the transformation of tetracycline (initially at 400 µg/L) with half-life shortened by 1.4-2.6 times. Despite the similar phototransformation ratios (80-90%) of the total loaded tetracycline after 60 min irradiation, the decreased ratios of cell fluorescence intensity (which was proportional to the expression amount of ARG tet(M)) were much higher with the two clays (94 and 93%) than with the two humic substances (44 and 69%) when compared to the respective dark controls. As illustrated by mass spectroscopic and chemical analyses, tetracycline was proposed to be mainly transformed to amide (ineffective in inducing ARGs) with the presence of clays by reaction with self-photosensitized singlet oxygen (1O2), while the humic substances might catalyze the production of another two demethylated and/or deaminated compounds (still effective in inducing ARGs) in addition to the amide compound via reaction with triplet excited state dissolved organic matter (3DOM*). As clay minerals and humic substances are important soil constituents and ubiquitously present in surface environments, the observed clay and humic-dependent photooxidation pathways of tetracycline and the differing selective pressures of the associated products highlight the need for monitoring the transformation compounds of antibiotics and provide critical insight into the development of antibiotic treatment protocols.
Assuntos
Argila , Escherichia coli , Substâncias Húmicas , Fotólise , Tetraciclina , Tetraciclina/química , Argila/química , Silicatos de Alumínio/química , Antibacterianos/química , Antibacterianos/farmacologia , Resistência a TetraciclinaRESUMO
In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2â¢-, H2O2, and â¢OH. However, the observed â¢OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the â¢OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower â¢OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and â¢OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low â¢OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and â¢OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.
Assuntos
Radical Hidroxila , Minerais , Radical Hidroxila/química , Minerais/química , Ferro/química , Argila/química , Oxigênio/química , Peróxido de Hidrogênio/química , Oxirredução , Silicatos de Alumínio/química , Bentonita/químicaRESUMO
Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.
Assuntos
Matéria Orgânica Dissolvida , Fósforo , Argila , Adsorção , Minerais/química , Lagos/química , CarbonoRESUMO
Hygroscopic growth of adsorbed water films on clay particles underlies a number of environmental science questions, from the air quality and climate impacts of mineral dust aerosols to the hydrology and mechanics of unsaturated soils and sedimentary rocks. Here, we use molecular dynamics (MD) simulations to establish the relation between adsorbed water film thickness (h) and relative humidity (RH) or disjoining pressure (Π), which has long been uncertain due to factors including sensitivity to particle shape, surface roughness, and aqueous chemistry. We present a new MD simulation approach that enables precise quantification of Π in films up to six water monolayers thick. We find that the hygroscopicity of phyllosilicate mineral surfaces increases in the order mica < K-smectite < Na-smectite. The relationship between Π and h on clay surfaces follows a double exponential decay with e-folding lengths of 2.3 and 7.5 Å. The two decay length scales are attributed to hydration repulsion and osmotic phenomena in the electrical double layer (EDL) at the clay-water interface.
Assuntos
Minerais , Silicatos , Água , Argila , Água/química , MolhabilidadeRESUMO
Bioreduction of soluble U(VI) to sparingly soluble U(IV) is proposed as an effective approach to remediating uranium contamination. However, the stability of biogenic U(IV) in natural environments remains unclear. We conducted U(IV) reoxidation experiments following U(VI) bioreduction in the presence of ubiquitous clay minerals and organic ligands. Bioreduced Fe-rich nontronite (rNAu-2) and Fe-poor montmorillonite (rSWy-2) enhanced U(IV) oxidation through shuttling electrons between oxygen and U(IV). Ethylenediaminetetraacetic acid (EDTA), citrate, and siderophore desferrioxamine B (DFOB) promoted U(IV) oxidation via complexation with U(IV). In the presence of both rNAu-2 and EDTA, the rate of U(IV) oxidation was between those in the presence of rNAu-2 and EDTA, due to a clay/ligand-induced change of U(IV) speciation. However, the rate of U(IV) oxidation in other combinations of reduced clay and ligands was higher than their individual ones because both promoted U(IV) oxidation. Unexpectedly, the copresence of rNAu-2/rSWy-2 and DFOB inhibited U(IV) oxidation, possibly due to (1) blockage of the electron transport pathway by DFOB, (2) inability of DFOB-complexed Fe(III) to oxidize U(IV), and (3) stability of the U(IV)-DFOB complex in the clay interlayers. These findings provide novel insights into the stability of U(IV) in the environment and have important implications for the remediation of uranium contamination.
Assuntos
Compostos Férricos , Urânio , Argila , Ligantes , Ácido Edético , Minerais , OxirreduçãoRESUMO
Carbon capture and storage (CCS) in subsurface reservoirs represents a highly promising and viable strategy for mitigating global carbon emissions. In the context of CCS implementation, it is particularly crucial to understand the complex molecular diffusive and adsorptive behaviors of anthropogenic carbon dioxide (CO2) in the subsurface at the nanoscale. Yet, conventional molecular models typically represent only single-slit pores and overlook the complexity of interconnected nanopores. In this work, finite kaolinite lamellar assemblages with abundant nanopores (r < 2 nm) were used. Molecular dynamics simulations were performed to quantify the spatial distribution correlations, adsorption preference, diffusivity, and residence time of the CO2 molecules in kaolinite nanopores. The movement of the CO2 molecules primarily occurs in the central and proximity regions of the siloxane surfaces, progressing from larger to smaller nanopores. CO2 prefers smaller nanopores over larger ones. The diffusion coefficients increase, while residence times decrease, with the pore size increasing, differing from typical slit-pore models due to the pore shape and interconnectivity. The perspectives in this study, which would be challenging in conventional slit-pore models, will facilitate our comprehension of the CO2 molecular behaviors in the complex subsurface clay sediments for developing quantitative estimation techniques throughout the CCS project durations.
RESUMO
Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.
Assuntos
Colestase Intra-Hepática , Colestase , Citrulinemia , Gastroenterologia , Doenças do Recém-Nascido , Transportadores de Ânions Orgânicos , Adolescente , Criança , Humanos , Lactente , Recém-Nascido , Colestase/diagnóstico , Colestase/etiologia , Colestase/terapia , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/etiologia , Colestase Intra-Hepática/terapia , Citrulinemia/complicações , Citrulinemia/diagnóstico , Citrulinemia/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Transportadores de Ânions Orgânicos/genéticaRESUMO
AIMS: Many countries are in the process of designing a deep geological repository (DGR) for long-term storage of used nuclear fuel. For several designs, used fuel containers will be placed belowground, with emplacement tunnels being backfilled using a combination of highly compacted powdered bentonite clay buffer boxes surrounded by a granulated "gapfill" bentonite. To limit the potential for microbiologically influenced corrosion of used fuel containers, identifying conditions that suppress microbial growth is critical for sustainable DGR design. This study investigated microbial communities in powdered and gapfill bentonite clay incubated in oxic pressure vessels at dry densities between 1.1 g cm-3 (i.e. below repository target) and 1.6 g cm-3 (i.e. at or above repository target) as a 1-year time series. RESULTS: Our results showed an initial (i.e. 1 month) increase in the abundance of culturable heterotrophs associated with all dry densities <1.6 g cm-3, which reveals growth during transient low-pressure conditions associated with the bentonite saturation process. Following saturation, culturable heterotroph abundances decreased to those of starting material by the 6-month time point for all 1.4 and 1.6 g cm-3 pressure vessels, and the most probable numbers of culturable sulfate-reducing bacteria (SRB) remained constant for all vessels and time points. The 16S rRNA gene sequencing results showed a change in microbial community composition from the starting material to the 1-month time point, after which time most samples were dominated by sequences associated with Pseudomonas, Bacillus, Cupriavidus, and Streptomyces. Similar taxa were identified as dominant members of the culture-based community composition, demonstrating that the dominant members of the clay microbial communities are viable. Members of the spore-forming Desulfosporosinus genus were the dominant SRB for both clay and culture profiles. CONCLUSIONS: After initial microbial growth while bentonite was below target pressure in the early phases of saturation, microbial growth in pressure vessels with dry densities of at least 1.4 g cm-3 was eventually suppressed as bentonite neared saturation.
Assuntos
Bentonita , Resíduos Radioativos , Resíduos Radioativos/análise , Argila , RNA Ribossômico 16S/genéticaRESUMO
Clay-based adsorbents have applications in environmental remediation, particularly in the removal of emerging pollutants such as antibiotics. Taking that into account, we studied the adsorption/desorption process of tetracycline (TC) using three raw and acid- or base-activated clays (AM, HJ1 and HJ2) collected, respectively, from Aleg (Mazzouna), El Haria (Jebess, Maknessy), and Chouabine (Jebess, Maknessy) formations, located in the Maknessy-Mazzouna basin, center-western of Tunisia. The main physicochemical properties of the clays were determined using standard procedures, where the studied clays presented a basic pH (8.39-9.08) and a high electrical conductivity (446-495 dS m-1). Their organic matter contents were also high (14-20%), as well as the values of the effective cation exchange capacity (80.65-97.45 cmolckg-1). In the exchange complex, the predominant cations were Na and Ca, in the case of clays HJ1 and AM, while Mg and Ca were dominant in the HJ2 clay. The sorption experimental setup consisted in performing batch tests, using 0.5 g of each clay sample, adding the selected TC concentrations, then carrying out quantification of the antibiotic by means of HPL-UV equipment. Raw clays showed high adsorption potential for TC (close to 100%) and very low desorption (generally less than 5%). This high adsorption capacity was also present in the clays after being activated with acid or base, allowing them to adsorb TC in a rather irreversible way for a wide range of pH (3.3-10) and electrical conductivity values (3.03-495 dS m-1). Adsorption experimental data were studied as regards their fitting to the Freundlich, Langmuir, Linear and Sips isotherms, being the Sips model the most appropriate to explain the adsorption of TC in these clays (natural or activated). These results could help to improve the overall knowledge on the application of new low-cost methods, using clay based adsorbents, to reduce risks due to emerging pollutants (and specifically TC) affecting the environment.