Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
2.
RNA ; 29(3): 308-316, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617658

RESUMO

Argonautes are small RNA-binding proteins, with some having small RNA-guided endonuclease (slicer) activity that cleaves target nucleic acids. One cardinal rule that is structurally defined is the inability of slicers to cleave target RNAs when nucleotide mismatches exist between the paired small RNA and the target at the cleavage site. Animal-specific PIWI clade Argonautes associate with PIWI-interacting RNAs (piRNAs) to silence transposable elements in the gonads, and this is essential for fertility. We previously demonstrated that purified endogenous mouse MIWI fails to cleave mismatched targets in vitro. Surprisingly, here we find using knock-in mouse models that target sites with cleavage-site mismatches at the 10th and 11th piRNA nucleotides are precisely sliced in vivo. This is identical to the slicing outcome in knock-in mice where targets are base-paired perfectly with the piRNA. Additionally, we find that pachytene piRNA-guided slicing in both these situations failed to initiate phased piRNA production from the specific target mRNA we studied. Instead, the two slicer cleavage fragments were retained in PIWI proteins as pre-piRNA and 17-19 nt by-product fragments. Our results indicate that PIWI slicing rules established in vitro are not respected in vivo, and that all targets of PIWI slicing are not substrates for piRNA biogenesis.


Assuntos
Elementos de DNA Transponíveis , Testículo , Masculino , Camundongos , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Testículo/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA de Interação com Piwi , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
3.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37874948

RESUMO

Proteases contribute to a broad spectrum of cellular functions. Given a relatively limited amount of experimental data, developing accurate sequence-based predictors of substrate cleavage sites facilitates a better understanding of protease functions and substrate specificity. While many protease-specific predictors of substrate cleavage sites were developed, these efforts are outpaced by the growth of the protease substrate cleavage data. In particular, since data for 100+ protease types are available and this number continues to grow, it becomes impractical to publish predictors for new protease types, and instead it might be better to provide a computational platform that helps users to quickly and efficiently build predictors that address their specific needs. To this end, we conceptualized, developed, tested and released a versatile bioinformatics platform, ProsperousPlus, that empowers users, even those with no programming or little bioinformatics background, to build fast and accurate predictors of substrate cleavage sites. ProsperousPlus facilitates the use of the rapidly accumulating substrate cleavage data to train, empirically assess and deploy predictive models for user-selected substrate types. Benchmarking tests on test datasets show that our platform produces predictors that on average exceed the predictive performance of current state-of-the-art approaches. ProsperousPlus is available as a webserver and a stand-alone software package at http://prosperousplus.unimelb-biotools.cloud.edu.au/.


Assuntos
Aprendizado de Máquina , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Especificidade por Substrato , Algoritmos
4.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881779

RESUMO

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/genética
5.
BMC Bioinformatics ; 25(1): 13, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195423

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are a class of non-coding RNAs that play a pivotal role as gene expression regulators. These miRNAs are typically approximately 20 to 25 nucleotides long. The maturation of miRNAs requires Dicer cleavage at specific sites within the precursor miRNAs (pre-miRNAs). Recent advances in machine learning-based approaches for cleavage site prediction, such as PHDcleav and LBSizeCleav, have been reported. ReCGBM, a gradient boosting-based model, demonstrates superior performance compared with existing methods. Nonetheless, ReCGBM operates solely as a binary classifier despite the presence of two cleavage sites in a typical pre-miRNA. Previous approaches have focused on utilizing only a fraction of the structural information in pre-miRNAs, often overlooking comprehensive secondary structure information. There is a compelling need for the development of a novel model to address these limitations. RESULTS: In this study, we developed a deep learning model for predicting the presence of a Dicer cleavage site within a pre-miRNA segment. This model was enhanced by an autoencoder that learned the secondary structure embeddings of pre-miRNA. Benchmarking experiments demonstrated that the performance of our model was comparable to that of ReCGBM in the binary classification tasks. In addition, our model excelled in multi-class classification tasks, making it a more versatile and practical solution than ReCGBM. CONCLUSIONS: Our proposed model exhibited superior performance compared with the current state-of-the-art model, underscoring the effectiveness of a deep learning approach in predicting Dicer cleavage sites. Furthermore, our model could be trained using only sequence and secondary structure information. Its capacity to accommodate multi-class classification tasks has enhanced the practical utility of our model.


Assuntos
Aprendizado Profundo , MicroRNAs , Humanos , Benchmarking , Aprendizado de Máquina , Nucleotídeos
6.
J Virol ; 97(5): e0032423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042750

RESUMO

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Assuntos
Doença de Newcastle , Peptídeo Hidrolases , Doenças das Aves Domésticas , Vacinas Virais , Animais , Embrião de Galinha , Anticorpos Antivirais , Galinhas , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Peptídeo Hidrolases/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas , Vacinas Virais/administração & dosagem , Virulência
7.
Avian Pathol ; 53(4): 242-246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38345041

RESUMO

Based on the pathogenicity in chickens, most H1-H16 avian influenza viruses (AIV) cause mild diseases, whereas some of the H5 and H7 AI viruses cause severe, systemic disease. The number of basic amino acids in the haemagglutinin (HA) cleavage site of AIV plays a critical role in pathogenicity. As we gain a greater understanding of the molecular mechanisms of pathogenicity, genome sequencing of the HA0 cleavage site has assumed a greater role in assessment of the potential pathogenicity of H5 and H7 viruses. We validated the use of HA cleavage site motif analysis by comparing molecular pathotyping data against experimental in vivo (intravenous pathogenicity index [IVPI] and lethality) data for determination of both low pathogenicity and high pathogenicity AI virus declaration with the goal of expediting pathotype confirmation and further reducing the reliance on in vivo testing. Our data provide statistical support to the continued use of molecular determination of pathotype for AI viruses based on the HA cleavage site sequence in the absence of an in vivo study determination. This approach not only expedites the declaration process of highly pathogenic AIV (HPAIV) but also reduces the need for experimental in vivo testing of H5 and H7 viruses.


Assuntos
Galinhas , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/virologia , Galinhas/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virulência , Fenótipo , Doenças das Aves Domésticas/virologia
8.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788836

RESUMO

Compared with other SARS-related coronaviruses (SARSr-CoVs), SARS-CoV-2 possesses a unique furin cleavage site (FCS) in its spike. This has stimulated discussion pertaining to the origin of SARS-CoV-2 because the FCS has been observed to be under strong selective pressure in humans and confers the enhanced ability to infect some cell types and induce cell-cell fusion. Furthermore, scientists have demonstrated interest in studying novel cleavage sites by introducing them into SARSr-CoVs. We review what is known about the SARS-CoV-2 FCS in the context of its pathogenesis, origin, and how future wildlife coronavirus sampling may alter the interpretation of existing data.


Assuntos
Furina , Glicoproteína da Espícula de Coronavírus , Evolução Molecular , Furina/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
9.
Biochem Biophys Res Commun ; 669: 61-67, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267861

RESUMO

As a member of the gasdermin family, gasdermin E (GSDME) is specifically cleaved by caspase-3, resulting in pyroptosis. To date, the biological characteristics and functions of human and mouse GSDME have been extensively studied; however, little is known of porcine GSDME (pGSDME). In this study, the full-length pGSDME-FL was cloned, which encodes 495 amino acids (aa) that have closely evolutionary relationships to the homolog of camelus, aquatic mammals, cattle and goat. Moreover, pGSDME was detected at different levels of expression in 21 tissues and 5 pig-derived cell lines tested by qRT-PCR, with the highest expression levels in mesenteric lymph nodes and PK-15 cell lines. Anti-pGSDME polyclonal antibody (pAb) with good specificity was generated by expressing the truncated recombinant protein pGSDME-1-208 and immunizing the rabbits. By western blot analysis using highly specific anti-pGSDME polyclonal antibody (pAb) prepared as primary antibody, it was not only confirmed that paclitaxel and cisplatin were positive stimuli to pGSDME cleavage and caspase-3 activation, but also identified the aspartate (D268) at position 268th of pGSDME as a cleavage site of caspase-3, and the overexpressed pGSDME-1-268 possesses cytotoxicity to HEK-293T cells, indicating that pGSDME-1-268 may contain active domains and involve pGSDME-mediated pyroptosis. These results lay a foundation for further investigating the function of pGSDME, especially its role in pyroptosis and its interaction with pathogens.


Assuntos
Gasderminas , Piroptose , Bovinos , Humanos , Animais , Camundongos , Suínos , Coelhos , Caspase 3/genética , Caspase 3/metabolismo , Piroptose/fisiologia , Cisplatino , Clonagem Molecular , Mamíferos/metabolismo
10.
J Virol ; 96(5): e0218621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019723

RESUMO

Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.


Assuntos
COVID-19/metabolismo , Furina/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adaptação Fisiológica , Animais , COVID-19/genética , COVID-19/virologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Furina/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , SARS-CoV-2/genética , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral
11.
J Virol ; 96(23): e0125022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36350154

RESUMO

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Linhagem Celular , Mutação , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
J Virol ; 96(17): e0099422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993736

RESUMO

Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Perus , Fatores de Virulência , Virulência , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Perus/virologia , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética
13.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902764

RESUMO

Rennet, an aspartate protease found in the stomach of unweaned calves, effectively cuts the peptide bond between Phe105-Met106 in κ-casein, hydrolyzing the casein micelles to coagulate the milk and is a crucial additive in cheese production. Rennet is one of the most used enzymes of animal origin in cheese making. However, using rennet al.one is insufficient to meet the increasing demand for cheese production worldwide. Numerous studies have shown that plant rennet can be an alternative to bovine rennet and exhibit a good renneting effect. Therefore, it is crucial and urgent to find a reliable plant rennet. Based on our team's research on rennet enzymes of plant origin, such as from Dregea sinensis Hemsl. and Moringa oleifer Lam., for more than ten years, this paper reviews the relevant literature on rennet sources, isolation, identification, rennet mechanism, functional active peptide screening, and application in cheese production. In addition, it proposes the various techniques for targeted isolation and identification of rennet and efficient screening of functionally active peptides, which show excellent prospects for development.

14.
Bioessays ; 43(12): e2100194, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34697827

RESUMO

The causative agent of COVID-19 SARS-CoV-2 has led to over 4 million deaths worldwide. Understanding the origin of this coronavirus is important for the prevention of future outbreaks. The dominant point of view that the virus transferred to humans either directly from bats or through an intermediate mammalian host has been challenged by Segreto and Deigin, who claim that the genome of SARS-CoV-2 has certain features suggestive of its artificial creation. Following their response to our commentary, here we continue the discussion of the proposed arguments for this hypothesis. We show that neither the existence of a furin cleavage site in SARS-CoV-2, nor the presence of specific sequences within the nucleotide insertion encoding that site are evidence for intelligent design. We also explain why existing genetic data, viral diversity and past human history suggest that a natural origin of the virus is the most likely scenario. Genetic evidence suggesting otherwise is yet to be presented.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Laboratórios , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
15.
Bioessays ; 43(5): e2000325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33751609

RESUMO

The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the subject of many hypotheses. One of them, proposed by Segreto and Deigin, assumes artificial chimeric construction of SARS-CoV-2 from a backbone of RaTG13-like CoV and receptor binding domain (RBD) of a pangolin MP789-like CoV, followed by serial cell or animal passage. Here we show that this hypothesis relies on incorrect or weak assumptions, and does not agree with the results of comparative genomics analysis. The genetic divergence between SARS-CoV-2 and both its proposed ancestors is too high to have accumulated in a lab, given the timeframe of several years. Furthermore, comparative analysis of S-protein gene sequences suggests that the RBD of SARS-CoV-2 probably represents an ancestral non-recombinant variant. These and other arguments significantly weaken the hypothesis of a laboratory origin for SARS-CoV-2, while the hypothesis of a natural origin is consistent with all available genetic and experimental data.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Laboratórios , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
16.
Bioessays ; 43(7): e2100015, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046923

RESUMO

RaTG13, MP789, and RmYN02 are the strains closest to SARS-CoV-2, and their existence came to light only after the start of the pandemic. Their genomes have been used to support a natural origin of SARS-CoV-2 but after a close examination all of them exhibit several issues. We specifically address the presence in RmYN02 and closely related RacCSxxx strains of a claimed natural PAA/PVA amino acid insertion at the S1/S2 junction of their spike protein at the same position where the PRRA insertion in SARS-CoV-2 has created a polybasic furin cleavage site. We show that RmYN02/RacCSxxx instead of the claimed insertion carry a 6-nucleotide deletion in the region and that the 12-nucleotide insertion in SARS-CoV-2 remains unique among Sarbecoviruses. Also, our analysis of RaTG13 and RmYN02's metagenomic datasets found unexpected reads which could indicate possible contamination. Because of their importance to inferring SARS-CoV-2's origin, we call for a careful reevaluation of RaTG13, MP789 and RmYN02 sequencing records and assembly methods.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Pangolins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Incerteza , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Conjuntos de Dados como Assunto , Furina/metabolismo , Humanos , Pandemias , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Deleção de Sequência/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
17.
Bioessays ; 43(9): e2100137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327738

RESUMO

Tyshkovskiy and Panchin have recently published a commentary on our paper in which they outline several "points of disagreement with the Segreto/Deigin hypothesis." As our paper is titled "The genetic structure of SARS-CoV-2 does not rule out a laboratory origin," points of disagreement should provide evidence that rules out a laboratory origin. However, Tyshkovskiy and Panchin provide no such evidence and instead attempt to criticize our arguments that highlight aspects of SARS-CoV-2 that could be consistent with the lab leak hypothesis. Strikingly, Tyshkovskiy and Panchin's main point of criticism is based on a false premise that we have claimed RaTG13 to be a direct progenitor of SARS-CoV-2, and their other points of criticism are either not valid, based on flawed mathematical analysis, or are unrelated to our hypotheses. Thus, the genetic structure of SARS-CoV-2 remains consistent with both natural or laboratory origin, which means that both the zoonotic and the lab leak hypothesis need to be investigated equally thoroughly.


Assuntos
COVID-19 , Quirópteros , Animais , Genoma Viral , Humanos , Laboratórios , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
18.
Bioessays ; 43(3): e2000240, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33200842

RESUMO

Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.


Assuntos
COVID-19/transmissão , Engenharia Genética/ética , Mutagênese Sítio-Dirigida/métodos , Vírus Reordenados/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sequência de Bases , COVID-19/patologia , COVID-19/virologia , China , Quirópteros/virologia , Eutérios/virologia , Furina/metabolismo , Humanos , Ligação Proteica , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834648

RESUMO

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Células HEK293 , Cisteína Endopeptidases/metabolismo , Eletroforese , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
20.
BMC Bioinformatics ; 23(1): 466, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344934

RESUMO

BACKGROUND: In most parts of the world, especially in underdeveloped countries, acquired immunodeficiency syndrome (AIDS) still remains a major cause of death, disability, and unfavorable economic outcomes. This has necessitated intensive research to develop effective therapeutic agents for the treatment of human immunodeficiency virus (HIV) infection, which is responsible for AIDS. Peptide cleavage by HIV-1 protease is an essential step in the replication of HIV-1. Thus, correct and timely prediction of the cleavage site of HIV-1 protease can significantly speed up and optimize the drug discovery process of novel HIV-1 protease inhibitors. In this work, we built and compared the performance of selected machine learning models for the prediction of HIV-1 protease cleavage site utilizing a hybrid of octapeptide sequence information comprising bond composition, amino acid binary profile (AABP), and physicochemical properties as numerical descriptors serving as input variables for some selected machine learning algorithms. Our work differs from antecedent studies exploring the same subject in the combination of octapeptide descriptors and method used. Instead of using various subsets of the dataset for training and testing the models, we combined the dataset, applied a 3-way data split, and then used a "stratified" 10-fold cross-validation technique alongside the testing set to evaluate the models. RESULTS: Among the 8 models evaluated in the "stratified" 10-fold CV experiment, logistic regression, multi-layer perceptron classifier, linear discriminant analysis, gradient boosting classifier, Naive Bayes classifier, and decision tree classifier with AUC, F-score, and B. Acc. scores in the ranges of 0.91-0.96, 0.81-0.88, and 80.1-86.4%, respectively, have the closest predictive performance to the state-of-the-art model (AUC 0.96, F-score 0.80 and B. Acc. ~ 80.0%). Whereas, the perceptron classifier and the K-nearest neighbors had statistically lower performance (AUC 0.77-0.82, F-score 0.53-0.69, and B. Acc. 60.0-68.5%) at p < 0.05. On the other hand, logistic regression, and multi-layer perceptron classifier (AUC of 0.97, F-score > 0.89, and B. Acc. > 90.0%) had the best performance on further evaluation on the testing set, though linear discriminant analysis, gradient boosting classifier, and Naive Bayes classifier equally performed well (AUC > 0.94, F-score > 0.87, and B. Acc. > 86.0%). CONCLUSIONS: Logistic regression and multi-layer perceptron classifiers have comparable predictive performances to the state-of-the-art model when octapeptide sequence descriptors consisting of AABP, bond composition and standard physicochemical properties are used as input variables. In our future work, we hope to develop a standalone software for HIV-1 protease cleavage site prediction utilizing the linear regression algorithm and the aforementioned octapeptide sequence descriptors.


Assuntos
Protease de HIV , HIV-1 , Humanos , Síndrome da Imunodeficiência Adquirida , Algoritmos , Teorema de Bayes , Infecções por HIV , Protease de HIV/química , HIV-1/enzimologia , Inibidores da Protease de HIV/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa