Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell Environ ; 45(1): 121-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748220

RESUMO

The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2 , however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2 , proxy. In addition, our results predict the response of SD to climate warming.


Assuntos
Dióxido de Carbono , Pinus sylvestris/fisiologia , Estômatos de Plantas/fisiologia , Adaptação Fisiológica , Clima , Europa (Continente) , Pinus sylvestris/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Temperatura
2.
J Evol Biol ; 34(11): 1803-1816, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582606

RESUMO

Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study in Mimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter. Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.


Assuntos
Mimulus , Flores/genética , Mimulus/genética , Fenótipo , Estações do Ano
3.
J Hered ; 112(3): 229-240, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33631009

RESUMO

Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.


Assuntos
Aclimatação , Altitude , Aves/genética , Aclimatação/genética , Animais , Fluxo Gênico , Genômica , Peru , Polimorfismo de Nucleotídeo Único
4.
Mol Phylogenet Evol ; 137: 146-155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075504

RESUMO

Clinal variation is a major pattern of observed phenotypic diversity and identifying underlying demographic processes is a necessary step to understand the establishment of clinal variation. The wild ginger series Sakawanum (genus Asarum) comprises four taxa, which exhibit intertaxonomic clinal variation in calyx lobe length across two continental islands isolated by a sea strait. To test alternative hypotheses of the evolutionary history and to determine the implications for the formation of clinal variation, we conducted approximate Bayesian computation (ABC) analysis and ecological niche modeling (ENM). ABC analysis indicated that the scenario assuming multiple admixture events was strongly supported. This scenario assumed two admixture events occurred between morphologically distinct taxa, likely leading to the generation of intermediate taxa. One of the admixture events was estimated to have occurred during the last glacial maximum (LGM), during which the taxa were estimated to have formed a common refugia in southern areas by ENM analysis. Although four taxa are currently distributed allopatrically on different islands and trans-oceanic dispersal appears unlikely, the formation of a land bridge and the geographic range shift to refugia would have allowed secondary contact between previously isolated taxa. This study suggests that clinal variation can be shaped by demographic history including multiple admixtures due to climatic oscillations.


Assuntos
Asarum/classificação , Asarum/genética , Sequência de Bases , Teorema de Bayes , Cloroplastos/genética , Ecossistema , Variação Genética , Haplótipos/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Filogenia , Filogeografia , Probabilidade
5.
J Anim Ecol ; 88(5): 717-733, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784045

RESUMO

Plasticity, local adaptation and evolutionary trade-offs drive clinal variation in traits associated with lifetime growth. Disentangling the processes and determinants that cause these traits to vary helps to understand species' responses to changing environments. This is particularly urgent for exploited populations, where size-selective harvest can induce life-history evolution. Lake trout (Salvelinus namaycush) are an exploited fish with a life history adapted to low-productivity freshwaters of northern North America, which makes them highly vulnerable to ecosystem changes and overfishing. We characterized life-history variation across a broad and diverse landscape for this iconic northern freshwater fish and evaluated whether clinal variation was consistent with hypotheses for local adaptation or growth plasticity. We estimated growth-associated traits for 90 populations exposed to a diversity of environments using a Bayesian multivariate hierarchical model. We tested for clinal variation in their somatic growth, size at maturity and reproductive allocation along environmental gradients of lake productivity, climate, prey and exploitation clines under competing hypotheses of plasticity and local adaptation. Clinal life-history variation was consistent with growth plasticity and local adaptations but not harvest-induced evolution. Variation in somatic growth was explained by exploitation, climate and prey fish occurrence. Increased exploitation, from pristine to fully exploited conditions, led to increased somatic growth (from 32 to 45 mm/year) and adult life spans, and reduced age at maturity (from 11 to 8 years). Variation in size at maturity was explained by climate and, less certainly, prey fish occurrence, while reproductive allocation was explained by evolutionary trade-offs with mortality and other traits, but not environment. Lake trout life-history variation within this range was as wide as that observed across dozens of other freshwater species. Lake trout life histories resulted from evolutionary trade-offs, growth plasticity and local adaptations along several environmental clines. Presuming a plastic response, we documented ~1.4-fold growth compensation to exploitation-lower growth compensation than observed in many freshwater fishes. These results suggest that harvested species exposed to spatially structured and diverse environments may have substantial clinal variation on different traits, but due to different processes, and this has implications for their resilience and successful management.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Teorema de Bayes , Pesqueiros , América do Norte
6.
BMC Evol Biol ; 18(1): 60, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29699488

RESUMO

BACKGROUND: The role of chromosomal arrangements in adaptation is supported by the repeatable clinal variation in inversion frequencies across continents in colonizing species such as Drosophila subobscura. However, there is a lack of knowledge on the genetic variation in genes within inversions, possibly targets of climatic selection, across a geographic latitudinal gradient. In the present study we analysed four candidate loci for thermal adaptation, located close to the breakpoints, in two chromosomal arrangements of the sex (A) chromosome of Drosophila subobscura with different thermal preferences. Individual chromosomes with A2 (the inverted arrangement considered warm adapted) or AST (the standard ancestral arrangement considered cold adapted) were sequenced across four European localities at varying latitudes, up to ~ 2500 Kms apart. RESULTS: Importantly, we found very low differentiation for each specific arrangement across populations as well as no clinal patterns of genomic variation. This suggests wide gene exchange along the cline. Differentiation between the sex chromosome arrangements was significant in the two more proximal regions relative to the AST orientation but not in the distal ones, independently of their location inside or outside the inversion. This can be possibly due to variation in the levels of gene flux and/or selection acting in these regions. CONCLUSIONS: Gene flow appears to have homogenized the genetic content within-arrangement at a wide geographical scale, despite the expected diverse selective pressures in the specific natural environments of the different populations sampled. It is thus likely that the inversion frequency clines in this species are being maintained by local adaptation in face of gene flow. The differences between arrangements at non-coding regions might be associated with the previously observed differential gene expression in different thermal regimes. Higher resolution genomic scans for individual chromosomal arrangements performed over a large environmental gradient are needed to find the targets of selection and further elucidate the adaptive mechanisms maintaining chromosomal inversion polymorphisms.


Assuntos
Adaptação Fisiológica/genética , Drosophila/genética , Genes de Insetos , Estudos de Associação Genética , Geografia , Cromossomos Sexuais/genética , Temperatura , Animais , Sequência de Bases , Fluxo Gênico , Rearranjo Gênico , Variação Genética , Desequilíbrio de Ligação/genética , Nucleotídeos/genética , Polimorfismo Genético , Análise de Componente Principal
7.
Mol Ecol ; 27(6): 1339-1341, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29663588

RESUMO

Understanding the processes underlying speciation has long been a challenge to evolutionary biologists. This spurs from difficulties teasing apart the various mechanisms that contribute to the evolution of barriers to reproduction. The study by Rafati et al. () in this issue of Molecular Ecology combines spatially explicit whole-genome resequencing with evaluation of differential gene expression across individuals with mixed ancestry to associate the genomic architecture of reproductive barriers with expression of reproductive incompatibilities. In a natural hybrid zone between rabbit subspecies, Oryctolagus cuniculus cuniculus and O. c. algirus (Figure ), Rafati et al. () use landscape-level patterns of allele frequency variation to identify potential candidate regions of the genome associated with reproductive isolation. These candidate regions are used to test predictions associated with the genomic architecture of reproductive barriers, including the role of structural rearrangements, enrichment of functional categories associated with incompatibilities, and the contribution of protein-coding versus regulatory changes. A lack of structural rearrangements and limited protein-coding changes in candidate regions point towards the importance of regulatory variation as major contributors to genetic incompatibilities, while functional enrichments indicate overrepresentation of genes associated with male infertility. To quantify phenotypic expression of proposed incompatibilities, the authors assess gene expression of experimental crosses. Extensive misregulation of gene expression within the testes of backcross hybrids relative to F1 and parental individuals provides an important link between genotype and phenotype, validating hypotheses developed from assessment of genomic architectures. Together, this work shows how pairing natural hybrid zones with experimental crosses can be used to link observations in nature to mechanistic underpinnings that may be tested experimentally.


Assuntos
Hibridização Genética , Isolamento Reprodutivo , Animais , Mapeamento Cromossômico , Genoma , Genômica , Masculino , Coelhos
8.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359877

RESUMO

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Assuntos
Aberrações Cromossômicas , Regulação da Expressão Gênica/genética , Especiação Genética , Isolamento Reprodutivo , Animais , Frequência do Gene , Masculino , Modelos Genéticos , Locos de Características Quantitativas/genética , Coelhos , Testículo/metabolismo , Sequenciamento Completo do Genoma
9.
Front Zool ; 15: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459820

RESUMO

BACKGROUND: Species delineation is particularly challenging in taxa with substantial intra-specific variation. In systematic studies of fishes, meristics and linear measurements that describe shape are often used to delineate species. Yet, little is known about the taxonomic value of these two types of morphological characteristics. Here, we used Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika to test which of these types of characters best matched genetic lineages that could represent species in this group of stenotypic rock-dwelling cichlids. We further investigated intra-population variation in morphology. By linking this to a proxy of a population's age, we could assess the evolutionary stability of different kinds of morphological markers. RESULTS: Morphological data was collected from 570 specimens originating from 86 localities. An AFLP approach revealed the presence of five lineages in the southern subbasin: T. moorii, T. brichardi, T. sp. 'maculatus', T. sp. 'Mpimbwe' and T. sp. 'red', which we consider to represent distinct species. Although both types of morphological data supported this classification, a comparison of PST-values that describe inter-population morphological differentiation, revealed a better correspondence between the taxon delineation based on AFLP data and the patterns revealed by an analysis of meristics than between the AFLP-based taxon delineation and the patterns revealed by an analysis of shape. However, classifying southern populations of Tropheus was inherently difficult as they contained a large amount of clinal variation, both in genetic and in morphological data, and both within and among species. A scenario is put forward to explain the current-day distribution of the species and colour varieties and the observed clinal variation across the subbasin's shoreline. Additionally, we observed that variation in shape was larger in populations from shallow shores whereas populations from steep shores were more variable in meristics. This difference is explained in terms of the different timescales at which small and large scale lake level fluctuations affected populations of littoral cichlids at steep and shallow shores. CONCLUSIONS: Our results showed meristics to be more evolutionary stable, and of higher taxonomic value for species delimitation in Tropheus, than linear measurements that describe shape. These results should be taken into account when interpreting morphological differences between populations of highly stenotypic species, such as littoral cichlids from the Great East African Lakes.

10.
Ecol Appl ; 28(8): 2165-2174, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30198207

RESUMO

Genetic resources have to be managed appropriately to mitigate the impact of climate change. For many wildland plants, conservation will require knowledge of the climatic factors affecting intraspecific genetic variation to minimize maladaptation. Knowledge of the interaction between traits and climate can focus management resources on vulnerable populations, provide guidance for seed transfer, and enhance fitness and resilience under changing climates. In this study, traits of big sagebrush (Artemisia tridentata) were examined among common gardens located in different climates. We focus on two subspecies, wyomingensis and tridentata, that occupy the most imperiled warm-dry spectrum of the sagebrush biome. Populations collected across the sagebrush biome were recorded for flower phenology and survival. Mixed-effects models examined each trait to evaluate genetic variation, environmental effects, and adaptive breadth of populations. Climate variables derived from population-source locations were significantly associated with these traits (P < 0.0001), explaining 31% and 11% of the flower phenology and survival variation, respectively. To illustrate our model and assess variability in prediction, we examine fixed and focal point seed transfer approaches to map contemporary and climate model ensemble projections in two different regions of the sagebrush biome. A comparison of seed transfer areas predicts that populations from warmer climates become more prevalent, replacing colder-adapted populations by mid-century. However, these warm-adapted populations are often located along the trailing edge, margins of the species range predicted to be lost due to a contraction of the climatic niche. Management efforts should focus on the collection and conservation of vulnerable populations and prudent seed transfer to colder regions where these populations are projected to occur by mid-century. Our models provide the foundation to develop an empirical, climate-based seed transfer system for current and future restoration of big sagebrush.


Assuntos
Artemisia/fisiologia , Mudança Climática , Conservação dos Recursos Naturais/métodos , Dispersão Vegetal , Sementes/crescimento & desenvolvimento , Artemisia/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Longevidade , Modelos Biológicos , Noroeste dos Estados Unidos , Sudoeste dos Estados Unidos
11.
New Phytol ; 214(3): 1230-1244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28152187

RESUMO

Bet-hedging via between-year seed dormancy is a costly strategy for plants in unpredictable environments. Theoretically, fitness costs can be reduced through a parental environmental effect when the environment is partly predictable. We tested whether populations from environments that differ in predictability diverged in parental effects on seed dormancy. Common garden-produced seeds of the two annual plant species Biscutella didyma and Bromus fasciculatus collected along an aridity gradient were grown under 12 irrigation treatments. Offspring germination was evaluated and related to environmental correlations between generations and their fitness consequences at the four study sites. One species exhibited strong seed dormancy that increased with unpredictability in seasonal precipitation. The parental effect on seed dormancy also increased proportionally with the environmental correlation between precipitation in the parental season and seedling density in the following season; this correlation increased from mesic to arid environments. Because fitness was negatively related to density, this parental effect may be adaptive. However, the lack of dormancy in the second species indicates that bet-hedging is not the only strategy for annual plants in arid environments. Our results provide the first evidence for clinal variation in the relative strength of parental effects along environmental gradients.


Assuntos
Adaptação Fisiológica , Biodiversidade , Sementes/fisiologia , Irrigação Agrícola , Secas , Fertilidade , Germinação , Probabilidade , Chuva , Estações do Ano , Plântula/fisiologia , Especificidade da Espécie
12.
J Evol Biol ; 30(4): 728-737, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28058767

RESUMO

Species exhibiting colour polymorphism are thought to have an ecological advantage at the landscape scale, because spatial segregation of alternatively adapted ecotypes into diverse habitats can increase the species' niche breadth and thus confer greater geographic range size. However, morph frequencies are also influenced by intrapopulational processes such as frequency- or density-dependent social interactions. To identify how social feedback may affect clinal variation in morph frequencies, we investigated reciprocal interactions between morph-specific thermal tolerance, local climatic conditions and social environments, in the context of a colour-morph frequency cline associated with a recent range expansion in blue-tailed damselflies (Ischnura elegans) in Sweden. Cold tolerances of gynochromes (female-like female morph) were positively correlated with local gynochrome frequencies, suggesting a positive frequency-dependent fitness benefit. In contrast, androchrome (male-mimic female morph) cold tolerances were improved following recent exposure to cold weather, suggesting a beneficial environmental acclimation effect. Thus, according to an environment-matching hypothesis for clinal variation, androchrome frequencies should therefore increase towards the (cooler) range limit. In contrast to this prediction, gynochrome frequencies increased at the expanding range limit, consistent with a positive frequency-dependent social feedback that is beneficial when invading novel climates. Our results suggest that when phenotypes or fitnesses are affected by interactions with conspecifics, beneficial social effects on environmental tolerances may (i) facilitate range shifts, and (ii) reverse or counteract typical patterns of intraspecific interactions and environment-matching clines observed in stable populations observed over broader geographic scales.


Assuntos
Cor , Odonatos/anatomia & histologia , Fenótipo , Polimorfismo Genético , Animais , Feminino , Masculino , Dinâmica Populacional , Suécia
13.
Am J Bot ; 103(1): 22-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26507110

RESUMO

PREMISE OF THE STUDY: Although our awareness of ploidy diversity has expanded with the application of flow cytometry, we still know little about the extent to which cytotypes within mixed-ploidy populations are genetically differentiated across environmental gradients. METHODS: To address this issue, we reared 14 populations of Solidago altissima spanning the prairie-forest ecotone in Minnesota in a common garden with a watering treatment. We assessed ploidy frequencies and measured survival, flowering phenology, and plant architectural traits for 4 years. KEY RESULTS: All populations harbored multiple cytotypes; prairie populations were dominated by tetraploids, forest populations by hexaploids. Diploids and polyploids differed significantly for 84% of the traits. Beyond average differences, the slope of trait values covaried with latitude and longitude, but this relationship was stronger for diploids than the other two polyploid cytotypes as indicated by numerous ploidy × latitude and ploidy × longitude interactions. For example, the timing of flowering of the cytotypes overlapped in populations sampled from the northeastern hemiboreal forest but differed significantly between cytotypes sampled from populations in the southwestern prairie. The watering treatments had weak effects, and there were no ploidy differences for phenotypic plasticity. CONCLUSIONS: Our data show that diploids have diverged genetically to a greater extent than polyploids along the environmental clines sampled in this study. Moreover, different environments favor phenotypic convergence over divergence among cytotypes for some traits. Differences in ploidy frequency and phenotypic divergence among cytotypes across gradients of temperature and precipitation are important considerations for restoration in an age of climate change.


Assuntos
Florestas , Variação Genética , Genoma de Planta , Pradaria , Ploidias , Solidago/genética , Mudança Climática , Minnesota , Chuva , Neve , Temperatura
14.
Am J Bot ; 103(1): 5-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26772310

RESUMO

In an age of rapid global change, it is imperative that we continue to improve our understanding of factors that govern genetic differentiation in plants to inform biologically reasonable predictions for the future and enlighten conservation and restoration practices. In this special issue, we have assembled a set of original research and reviews that employ diverse approaches, both classic and contemporary, to illuminate patterns of phenotypic and genetic variation, probe the underlying evolutionary processes that have contributed to these patterns, build predictive models, and test evolutionary hypotheses. Our goal was to underscore the unique insights that can be obtained through the complementary and distinct studies of plant populations across species' geographic ranges.


Assuntos
Evolução Biológica , Variação Genética , Plantas/genética , Fenótipo
15.
J Therm Biol ; 61: 91-97, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27712666

RESUMO

Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35m and 2173m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25°C and 29°C), and dietary yeast concentration (5g/L and 25g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade , Aclimatação , Altitude , Fenômenos Fisiológicos da Nutrição Animal , Animais , Clima , Dieta , Feminino , Masculino , Estresse Fisiológico , Temperatura , Turquia
16.
J Evol Biol ; 28(6): 1270-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25975714

RESUMO

Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13- and 17-year species in each group, 13-year cicadas were equal in size or slightly smaller on average than their 17-year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17-year cicadas have lowered growth rates compared to their 13-years counterparts, allowing 13-year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17-year counterparts at the same locations. However, in the Decim group, which includes two 13-year species, the more southerly, anciently diverged 13-year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13- and 17-year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles.


Assuntos
Adaptação Fisiológica/fisiologia , Distribuição Animal/fisiologia , Tamanho Corporal/fisiologia , Hemípteros/fisiologia , Estágios do Ciclo de Vida/fisiologia , Animais , Feminino , Masculino , Especificidade da Espécie
17.
J Evol Biol ; 28(12): 2163-74, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26302686

RESUMO

Clinal variation is one of the most emblematic examples of the action of natural selection at a wide geographical range. In Drosophila subobscura, parallel clines in body size and inversions, but not in wing shape, were found in Europe and South and North America. Previous work has shown that a bottleneck effect might be largely responsible for differences in wing trait-inversion association between one European and one South American population. One question still unaddressed is whether the associations found before are present across other populations of the European and South American clines. Another open question is whether evolutionary dynamics in a new environment can lead to relevant changes in wing traits-inversion association. To analyse geographical variation in these associations, we characterized three recently laboratory founded D. subobscura populations from both the European and South American latitudinal clines. To address temporal variation, we also characterized the association at a later generation in the European populations. We found that wing size and shape associations can be generalized across populations of the same continent, but may change through time for wing size. The observed temporal changes are probably due to changes in the genetic content of inversions, derived from adaptation to the new, laboratory environment. Finally, we show that it is not possible to predict clinal variation from intrapopulation associations. All in all this suggests that, at least in the present, wing traits-inversion associations are not responsible for the maintenance of the latitudinal clines in wing shape and size.


Assuntos
Drosophila/fisiologia , Asas de Animais/crescimento & desenvolvimento , Animais , Inversão Cromossômica , Drosophila/genética
18.
Ann Bot ; 115(7): 1177-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862244

RESUMO

BACKGROUND AND AIMS: The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. METHODS: Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. KEY RESULTS: In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. CONCLUSIONS: The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.


Assuntos
Ecossistema , Variação Genética , Saxifragaceae/genética , Seleção Genética , Clima , Europa (Continente) , Densidade Demográfica , Característica Quantitativa Herdável , Técnica de Amplificação ao Acaso de DNA Polimórfico
19.
Am J Bot ; 102(4): 609-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878093

RESUMO

PREMISE OF STUDY: Molecular population genetics is a powerful tool to infer how species responded to past environmental change. In the northern hemisphere, interest is increasing in how species responded to changes in ice coverage and temperature during the last glaciation maximum (LGM, between 18000-21000 yr ago) with a common assumption that glacial refugia were located at the southern edge of a species range. METHODS: We reconstructed the glacial and postglacial phylogeography of Sabatia kennedyana, a member of the Atlantic Coastal Plains Flora with a current distribution from Nova Scotia (NS) to South Carolina, using both cpDNA and nuclear markers. We also examined clinal variation in morphological traits, in particular relative investment in asexual vs sexual growth. KEY RESULTS: We find strong evidence that the species did not reside in southern glacial refugia, but rather in primary glacial refugia off the exposed continental shelf extending from Cape Cod and that this area was responsible for the founding of modern populations across the range from Nova Scotia (NS) to the United States. Additionally, based on the finding of higher cpDNA diversity and older cpDNA lineages in NS, we propose that multiple founder events occurred in NS, while only a single lineage gave rise to current populations in the United States. CONCLUSIONS: By understanding how S. kennedyana responded to past shifts in climate and by identifying areas of high genetic diversity in the northern range edge, we discuss the potential response of the species to future climate change scenarios.


Assuntos
DNA de Cloroplastos/genética , Variação Genética , Gentianaceae/genética , Dispersão Vegetal , Refúgio de Vida Selvagem , Canadá , Mudança Climática , DNA de Cloroplastos/metabolismo , Evolução Molecular , Haplótipos/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA , Estados Unidos
20.
New Phytol ; 201(4): 1263-1276, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24491114

RESUMO

• Populus trichocarpa is widespread across western North America spanning extensive variation in photoperiod, growing season and climate. We investigated trait variation in P. trichocarpa using over 2000 trees from a common garden at Vancouver, Canada, representing replicate plantings of 461 genotypes originating from 136 provenance localities. • We measured 40 traits encompassing phenological events, biomass accumulation, growth rates, and leaf, isotope and gas exchange-based ecophysiology traits. With replicated plantings and 29,354 single nucleotide polymorphisms (SNPs) from 3518 genes, we estimated both broad-sense trait heritability (H(2)) and overall population genetic structure from principal component analysis. • Populus trichocarpa had high phenotypic variation and moderate/high H(2) for many traits. H(2) ranged from 0.3 to 0.9 in phenology, 0.3 to 0.8 in biomass and 0.1 to 0.8 in ecophysiology traits. Most traits correlated strongly with latitude, maximum daylength and temperature of tree origin, but not necessarily with elevation, precipitation or heat : moisture indices. Trait H(2) values reflected trait correlation strength with geoclimate variables. The population genetic structure had one significant principal component (PC1) which correlated with daylength and showed enrichment for genes relating to circadian rhythm and photoperiod. • Robust relationships between traits, population structure and geoclimate in P. trichocarpa reflect patterns which suggest that range-wide geographical and environment gradients have shaped its genotypic and phenotypic variability.


Assuntos
Meio Ambiente , Geografia , Populus/genética , Característica Quantitativa Herdável , Biomassa , Colúmbia Britânica , Clima , Ontologia Genética , Genes de Plantas , Padrões de Herança/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa