Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161743

RESUMO

This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure a greater flexibility, in the initialization part of the method, an invariant table set is created containing several invariant sets computed for different constraints values. The algorithm was tested in simulation, using both homogeneous and heterogeneous initial conditions for a platoon with four homogeneous vehicles, using a predecessor-following, uni-directionally communication topology. The simulation results show that the coalitions between vehicles are formed in the beginning of the experiment, when the local feasibility of each vehicle is lost. These findings successfully prove the usefulness of the proposed coalitional DMPC method in a vehicle platooning application, and illustrate the robustness of the algorithm, when tested in different initial conditions.


Assuntos
Algoritmos , Comunicação , Simulação por Computador
2.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336257

RESUMO

In this study, a novel Multivariable Adaptive Neural Network Controller (MANNC) is developed for coupled model-free n-input n-output systems. The learning algorithm of the proposed controller does not rely on the model of a system and uses only the history of the system inputs and outputs. The system is considered as a 'black box' with no pre-knowledge of its internal structure. By online monitoring and possessing the system inputs and outputs, the parameters of the controller are adjusted. Using the accumulated gradient of the system error along with the Lyapunov stability analysis, the weights' adjustment convergence of the controller can be observed, and an optimal training number of the controller can be selected. The Lyapunov stability of the system is checked during the entire weight training process to enable the controller to handle any possible nonlinearities of the system. The effectiveness of the MANNC in controlling nonlinear square multiple-input multiple-output (MIMO) systems is demonstrated via three simulation studies covering the cases of a time-invariant nonlinear MIMO system, a time-variant nonlinear MIMO system, and a hybrid MIMO system, respectively. In each case, the performance of the MANNC is compared with that of a properly selected existing counterpart. Simulation results demonstrate that the proposed MANNC is capable of controlling various types of square MIMO systems with much improved performance over its existing counterpart. The unique properties of the MANNC will make it a suitable candidate for many industrial applications.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear , Algoritmos , Simulação por Computador , Modelos Biológicos
3.
Sensors (Basel) ; 21(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208222

RESUMO

Following the current technological development and informational advancement, more and more physical systems have become interconnected and linked via communication networks. The objective of this work is the development of a Coalitional Distributed Model Predictive Control (C- DMPC) strategy suitable for controlling cyber-physical, multi-agent systems. The motivation behind this endeavour is to design a novel algorithm with a flexible control architecture by combining the advantages of classical DMPC with Coalitional MPC. The simulation results were achieved using a test scenario composed of four dynamically coupled sub-systems, connected through an unidirectional communication topology. The obtained results illustrate that, when the feasibility of the local optimization problem is lost, forming a coalition between neighbouring agents solves this shortcoming and maintains the functionality of the entire system. These findings successfully prove the efficiency and performance of the proposed coalitional DMPC method.


Assuntos
Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa