Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 222(1): 604-613, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30326543

RESUMO

Tropical mountains are disproportionately biodiverse relative to their surface area, but the processes underlying their exceptional diversity require further study. Here, we use comparative phylogenetic methods to examine the impact of the Andean orogeny on the diversification of Neotropical Phlegmariurus, a species-rich lycophyte clade. We generated a time-calibrated phylogeny of 105 species of Neotropical Phlegmariurus and estimated lineage diversification rates. We tested for correlations between lineage diversification rates and species range size, niche breadth, elevational range amplitude, and mean elevation of occurrence. A recently developed macroevolutionary model was used to incorporate geological data and test for an association between diversification rates and the Andean uplift. Diversification rates of Neotropical Phlegmariurus are negatively correlated with species range size and positively correlated with mean elevation of species occurrence. The rise of the Andes is strongly associated with increased rates of diversification in Neotropical Phlegmariurus during the last 10 Myr. Our study demonstrates the importance of mountain-building events and geographical isolation of alpine populations as drivers of rapid diversification, even in spore-dispersed plants. This work also highlights the usefulness of combined phylogenetic, geological and ecological datasets, and the promise of comparative environment-dependent diversification models in better understanding the evolutionary origins of biodiversity.


Assuntos
Biodiversidade , Ecossistema , Lycopodiaceae/fisiologia , Clima Tropical , Altitude , Paleontologia , Filogenia
2.
New Phytol ; 222(2): 1061-1075, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556907

RESUMO

Lycophytes are a key group for understanding vascular plant evolution. Lycophyte plastomes are highly distinct, indicating a dynamic evolutionary history, but detailed evaluation is hindered by the limited availability of sequences. Eight diverse plastomes were sequenced to assess variation in structure and functional content across lycophytes. Lycopodiaceae plastomes have remained largely unchanged compared with the common ancestor of land plants, whereas plastome evolution in Isoetes and especially Selaginella is highly dynamic. Selaginella plastomes have the highest GC content and fewest genes and introns of any photosynthetic land plant. Uniquely, the canonical inverted repeat was converted into a direct repeat (DR) via large-scale inversion in some Selaginella species. Ancestral reconstruction identified additional putative transitions between an inverted and DR orientation in Selaginella and Isoetes plastomes. A DR orientation does not disrupt the activity of copy-dependent repair to suppress substitution rates within repeats. Lycophyte plastomes include the most archaic examples among vascular plants and the most reconfigured among land plants. These evolutionary trends correlate with the mitochondrial genome, suggesting shared underlying mechanisms. Copy-dependent repair for DR-localized genes indicates that recombination and gene conversion are not inhibited by the DR orientation. Gene relocation in lycophyte plastomes occurs via overlapping inversions rather than transposase/recombinase-mediated processes.


Assuntos
Composição de Bases/genética , Genes de Plantas , Variação Genética , Genomas de Plastídeos , Íntrons/genética , Sequências Repetidas Invertidas/genética , Lycopodiaceae/genética , RNA Ribossômico/genética , Evolução Molecular , Dosagem de Genes , Tamanho do Genoma , Filogenia , Selaginellaceae/genética
3.
Mol Phylogenet Evol ; 125: 1-13, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29559245

RESUMO

The Neotropical clade of the lycophyte genus Phlegmariurus is comprised of an estimated 150 described species and exhibits exceptional morphological and ecological diversity. Because of their simple morphology, frequent convergent evolution, and the recentness of the group's diversification, the delimitation of species and species groups has remained challenging. Here, we present a robustly support phylogeny of Neotropical Phlegmariurus based on six chloroplast markers and ca. 70% of known species, and use ancestral character state reconstruction to investigate morphological evolution in the clade, and define natural species groups. The Neotropical species of Phlegmariurus form a clade that also includes a small number of Afro-Madagascan species. A morphologically and ecologically variable group of species from southeastern Brazil form a monophyletic group and represent a parallel radiation to principally Andean lineages. Species groups in Neotropical Phlegmariurus that were previously recognized based on morphology are not monophyletic. We find support for 11 morphologically cohesive and well-supported species groups. Morphological homoplasy is common in Phlegmariurus and complicates infrageneric classification of the Neotropical taxa. Our results provide a useful framework for identifying species groups and understanding patterns of morphological evolution in Neotropical Phlegmariurus. The radiation of the Brazilian species remains poorly understood and requires further study.


Assuntos
Lycopodiaceae/anatomia & histologia , Lycopodiaceae/classificação , Filogenia , Clima Tropical , Biodiversidade , Brasil , Funções Verossimilhança , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Especificidade da Espécie
4.
Phytochemistry ; 162: 207-215, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952081

RESUMO

Over the years studies on sporopollenin have reported a wide variety of structures. However, the methods and techniques used to elucidate sporopollenin structures are highly diverse so that much is still unclear with respect to the nature and structural diversity of sporopollenins. In order to investigate the structural diversity in sporopollenin between different taxa, extant sporomorphs of ten different species ranging from a mushroom to a cycad were examined using a relatively simple and fast analytical procedure. Sporomorphs, before and after saponification, were analysed for sporopollenin composition by Thermally assisted Hydrolysis and Methylation (THM) using [13C]tetramethylammonium hydroxide ([13C]TMAH). The sporomorp chemical composition differed markedly between the groups of organisms analysed. Moreover, we not only identified the nature and relative quantities of the well-known sporopollenin constituents p-coumaric acid and ferulic acid but also many other phenolic moieties, such as caffeic acid, which appeared to be the most abundant phenolic constituent in spores of Equisetum palustre, Salvinia molesta, Cyrtomium falcatum and Anemia phyllitidis. Within the two Equisetum species analysed as well as in the closely related Azolla and Salvinia species the same suite of phenolic constituents were observed, but their relative distribution varied largely. We thus demonstrate the existence of a high structural diversity, both qualitatively and quantitatively in sporopollenins enabling future studies related to the evolution, phylogeny and (palaeo)environment of sporopollenin-producing organisms. Furthermore, a better knowledge of sporopollenin and its structural variety is of relevance to the rapidly growing application of spores and pollen as a drug delivery agent in medicine.


Assuntos
Biopolímeros/química , Carotenoides/química , Hidrólise , Espectrometria de Massas , Pólen/química , Esporos Fúngicos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa