Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Immunity ; 51(4): 724-734.e4, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586542

RESUMO

HIV- and SIV-envelope (Env) trimers are both extensively glycosylated, and antibodies identified to date have been unable to fully neutralize SIVmac239. Here, we report the isolation, structure, and glycan interactions of antibody ITS90.03, a monoclonal antibody that completely neutralized the highly neutralization-resistant isolate, SIVmac239. The co-crystal structure of a fully glycosylated SIVmac239-gp120 core in complex with rhesus CD4 and the antigen-binding fragment of ITS90.03 at 2.5-Å resolution revealed that ITS90 recognized an epitope comprised of 45% glycan. SIV-gp120 core, rhesus CD4, and their complex could each be aligned structurally to their human counterparts. The structure revealed that glycans masked most of the SIV Env protein surface, with ITS90 targeting a glycan hole, which is occupied in ∼83% of SIV strains by glycan N238. Overall, the SIV glycan shield appears to functionally resemble its HIV counterpart in coverage of spike, shielding from antibody, and modulation of receptor accessibility.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Infecções por HIV/imunologia , HIV/fisiologia , Polissacarídeos/química , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Células Cultivadas , Cristalização , Cristalografia por Raios X , Modelos Animais de Doenças , Glicosilação , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Macaca mulatta , Glicoproteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
2.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394996

RESUMO

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Assuntos
Galectina 3 , Monossacarídeos , Animais , Humanos , Camundongos , Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Galectina 3/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Monossacarídeos/química , Monossacarídeos/farmacologia , Oxigênio , Enxofre
3.
Mol Divers ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652366

RESUMO

Plinabulin, a 2, 5-diketopiperazine-type tubulin inhibitor derived from marine natural products, is currently undergoing Phase III clinical trials for the treatment of non-small cell lung cancer (NSCLC) and chemotherapy-induced neutropenia (CIN). To obtain novel 2, 5-diketopiperazine derivatives with higher biological activity, we designed and synthesized two series of 37 plinabulin derivatives at the C-ring, based on the co-crystal structure of compound 1 and tubulin. Their structures were characterized using NMR and HRMS. All compounds were screened in vitro using the lung cancer cell line NCI-H460 using the MTT method, and the compounds with better activity were further screened in BxPC-3 and HT-29 cells. The compounds 16c (IC50 = 2.0, NCI-H460; IC50 = 1.2 nM, BxPC-3; IC50 = 1.97 nM, HT-29) and 26r (IC50 = 0.96, NCI-H460; IC50 = 0.66 nM, BxPC-3; IC50 = 0.61 nM, HT-29) had the best activity. The cytotoxic activity of compound 26r against various tumor cell lines occurred at less than 1 nM.

4.
Bioorg Med Chem ; 93: 117460, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660465

RESUMO

Heparanase-1 (HPSE1) is an endo-ß-d-glucuronidase that is the only mammalian enzyme known to cleave heparan sulfate (HS) of heparan sulfate proteoglycans (HSPG), a key component of the glycocalyx layer of the vascular endothelium matrix. Inhibition of HPSE1 has therapeutic potential for cancer and proteinuric kidney diseases. We previously reported that 2 showed a moderate potency as an HPSE1 inhibitor and an issue of selectivity against exo-ß-d-glucuronidase (GUSß) and glucocerebrosidase (GBA) remained. A structure-based lead optimization of 2 using X-ray co-crystal structure analysis and fragment molecular orbital calculation resulted in 4e, which showed a more than 7-fold increase in HPSE1 inhibitory activity. The subsequent introduction of a methyl group into the 6-hydroxy group of 4e resulted in 18 with reduced inhibitory activities against GUSß and GBA while maintaining the inhibitory activity against HPSE1. The inhibitory activities of 18 against serum HPSE1 in mice were significant and lasted for 4 h at doses of 3, 30, and 100 mg/kg. Compound 18 could be a novel lead compound for HPSE1 inhibitors with improved inhibitory activity against HPSE1 and increased HPSE1 selectivity over GUSß and GBA.


Assuntos
Glucuronidase , Piridinas , Animais , Camundongos , Ácidos Carboxílicos , Mamíferos
5.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239980

RESUMO

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Células HEK293 , SARS-CoV-2 , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/química
6.
Bioorg Med Chem ; 68: 116877, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714534

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays a central role in metabolic processes. PPARγ full agonists have side effects, arguing for the discovery of PPARγ partial agonists with novel chemotypes. We report the unique binding mode of the known allosteric retinoic acid receptor-related orphan receptor gamma t (RORγt) ligand MRL-871 to PPARγ. MRL-871 binds between PPARγ helices 3, 5, 7 and 11, where it stabilizes the beta-sheet region with a hydrogen bond between its carboxylic acid moiety and PPARγ Ser370. Its unique binding mode differs from that of the benzoyl 2-methyl indoles which are well-studied, structurally similar, PPARγ ligands. MRL-871's high affinity for PPARγ induces only limited coactivator stabilization, highlighting its attractive partial agonistic characteristics. Affinity comparison of MRL-871 and related compounds towards both RORγt and PPARγ indicates the possibility for tuning of selectivity, bringing MRL-871 forward as an interesting starting point for novel PPARγ ligands.


Assuntos
Indazóis , PPAR gama , Indazóis/farmacologia , Ligantes , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , PPAR gama/agonistas , Estrutura Secundária de Proteína
7.
J Enzyme Inhib Med Chem ; 36(1): 903-913, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33820450

RESUMO

Bromodomain-containing protein 4 (BRD4) binds acetylated lysine residues on the N-terminal tails of histones through two bromodomains (BD1 and BD2) to regulate gene transcription. Inhibiting one or both of bromodomains resulted in different phenotypes, suggesting BD1 and BD2 may have different functions. Here we report the characterisation of a natural product 3',4',7,8-tetrahydroxyflavone as a novel and potent selective BRD4 inhibitor. The compound is 100-fold more selective for BRD4-BD2 (IC50 = 204 nM) than BRD4-BD1 (IC50=17.9 µM). Co-crystal structures show 3',4',7,8-tetrahydroxyflavone binds to the acetylated lysine binding pocket of BRD4-BD1 or BRD4-BD2, but establishes more interactions with BRD4-BD2 than BRD4-BD1. Our data suggest 3',4',7,8-tetrahydroxyflavone as a potent selective inhibitor of BRD4-BD2 with a novel chemical scaffold. Given its distinct chemical structure from current BRD4 inhibitors, this compound may open the door for a novel class of anti-BRD4 inhibitors by serving as a lead compound.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
8.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299628

RESUMO

We performed an X-ray crystallographic study of complexes of protein kinase PIM-1 with three inhibitors comprising an adenosine mimetic moiety, a linker, and a peptide-mimetic (d-Arg)6 fragment. Guided by the structural models, simplified chemical structures with a reduced number of polar groups and chiral centers were designed. The developed inhibitors retained low-nanomolar potency and possessed remarkable selectivity toward the PIM kinases. The new inhibitors were derivatized with biotin or fluorescent dye Cy5 and then applied for the detection of PIM kinases in biochemical solutions and in complex biological samples. The sandwich assay utilizing a PIM-2-selective detection antibody featured a low limit of quantification (44 pg of active recombinant PIM-2). Fluorescent probes were efficiently taken up by U2OS cells and showed a high extent of co-localization with PIM-1 fused with a fluorescent protein. Overall, the developed inhibitors and derivatives represent versatile chemical tools for studying PIM function in cellular systems in normal and disease physiology.


Assuntos
Corantes Fluorescentes , Imagem Molecular , Peptidomiméticos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Carbocianinas/química , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
9.
Bioorg Med Chem ; 28(1): 115186, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759826

RESUMO

The co-crystal structure of Compound 6b with tubulin was prepared and solved for indicating the binding mode and for further optimization. Based on the co-crystal structures of tubulin with plinabulin and Compound 6b, a total of 27 novel A/B/C-rings plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human lung cancer NCI-H460 cell line. The optimum phenoxy-diketopiperazine-type Compound 6o exhibited high potent cytotoxicity (IC50 = 4.0 nM) through SAR study of three series of derivatives, which was more potent than plinabulin (IC50 = 26.2 nM) and similar to Compound 6b (IC50 = 3.8 nM) against human lung cancer NCI-H460 cell line. Subsequently, the Compound 6o was evaluated against other four human cancer cell lines. Both tubulin polymerization assay and immunofluorescence assay showed that Compound 6o could inhibit microtubule polymerization efficiently. Furthermore, theoretical calculation of the physical properties and molecular docking were elucidated for these plinabulin derivatives. The binding mode of Compound 6o was similar to Compound 6b based on the result of molecular docking. The theoretical calculated LogPo/w and PCaco of Compound 6o were better than Compound 6b, which could enhance its cytostatic activity. Therefore, Compound 6o might be developed as a novel potent anti-microtubule agent.


Assuntos
Antineoplásicos/farmacologia , Dicetopiperazinas/farmacologia , Desenvolvimento de Medicamentos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Dicetopiperazinas/síntese química , Dicetopiperazinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Bioorg Med Chem Lett ; 29(2): 334-338, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30522951

RESUMO

A series of imidazolinylindole derivatives were discovered as novel kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Structure-activity relationship (SAR) studies led to the identification of potent human KLK7 inhibitors. By further modification of the benzenesulfonyl moiety to overcome species differences in inhibitory activity, potent inhibitors against both human and mouse KLK7 were identified. Furthermore, the complex structure of 25 with mouse KLK7 could explain the SAR and the cause of the species differences in inhibitory activity.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Imidazolinas/farmacologia , Indóis/farmacologia , Calicreínas/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Imidazolinas/síntese química , Imidazolinas/química , Indóis/síntese química , Indóis/química , Calicreínas/metabolismo , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 27(9): 1836-1844, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910474

RESUMO

MBRI-001, a deuterium-substituted plinabulin derivative, has been reported to have better pharmacokinetic and similar antitumor effects in comparison with plinabulin. In this approach, we further carried out its polymorphs, co-crystal structure of MBRI-001-tubulin and tubulin inhibition study. Among the different polymorphs, Form F (MBRI-001/H2O) was prepared and evaluated, which had better physical stability and suitable process for scale-up production. Co-crystal structure of MBRI-001-tubulin (PDB:5XI5) was prepared and analyzed. The result of tubulin polymerization assay demonstrated that MBRI-001 could inhibit tubulin polymerization which was similar as plinabulin. Subsequently, the anti-proliferative activities of plinabulin and MBRI-001 were evaluated against two different human lung cancer cell lines. In vivo study, MBRI-001 revealed similar antitumor inhibition in comparison with plinabulin in A549 xenograft tumor model. Therefore, we suggested that MBRI-001 could be developed as a promising anti-cancer agent in near future.


Assuntos
Dicetopiperazinas/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Deutério/química , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Dicetopiperazinas/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Conformação Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Estrutura Terciária de Proteína , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
12.
Molecules ; 24(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818883

RESUMO

Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis and biosynthesis to promote cancer cell proliferation, and is believed to be a promising target for cancer therapy. Herein, based on the anthraquinone scaffold, we synthesized 31 anthraquinone derivatives and investigated the structure-activity relationship (SAR). The 3-substitient of sulfonamide on the anthraquinone scaffold was essential for maintaining potency and the modifications of the hydroxyl of alizarin would cause a sharp decrease in potency. In the meantime, we determined the co-crystal structure of PGAM1 and one of the anthraquinone inhibitors 9i with IC50 value of 0.27 µM. The co-crystal structure revealed that F22, K100 and R116 of PGAM1 were critical residues for the binding of inhibitors which further validated the SAR. Consistent with the crystal structure, a competitive assay illustrated that compound 9i was a noncompetitive inhibitor. In addition, compound 9i effectively restrained different lung cancer cells proliferation in vitro. Taken together, this work provides reliable guide for future development of PGAM1 inhibitors and compound 9i may act as a new leading compound for further optimization.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fosfoglicerato Mutase/antagonistas & inibidores , Sulfonamidas/farmacologia , Antraquinonas/química , Antineoplásicos/química , Cristalização , Inibidores Enzimáticos/química , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Células Tumorais Cultivadas
13.
Bioorg Med Chem ; 26(8): 2061-2072, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571653

RESUMO

Based on the co-crystal structures of tubulin with plinabulin and Compound 1 (a derivative of plinabulin), a total of 18 novel plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human pancreatic cancer BxPC-3 cell lines. Two novel Compounds 13d and 13e exhibited potent activities with IC50 at 1.56 and 1.72 nM, respectively. The tubulin polymerization assay indicated that these derivatives could inhibit microtubule polymerization. Furthermore, the interaction between tubulin and these compounds were elucidated by molecular docking. The binding modes of Compounds 13d and 13e were similar to the co-crystal structure of Compound 1. H-π interaction was observed between the aromatic hydrogen of thiophene moiety with Phe20, which could enhance their binding affinities.


Assuntos
Antineoplásicos/síntese química , Dicetopiperazinas/química , Desenho de Fármacos , Moduladores de Tubulina/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/patologia , Estrutura Terciária de Proteína , Solubilidade , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
14.
Biochem Biophys Res Commun ; 482(4): 1289-1295, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27993680

RESUMO

Human Protein tyrosine kinase 6 (PTK6)(EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed five-fold or more in human breast tumors and breast cancer cell lines but its expression being low or completely absent from normal mammary gland. There is a recent interest in targeting PTK6-positive breast cancer by developing small molecule inhibitor against PTK6. Novel imidazo[1,2-a]pyrazin-8-amines (IPA) derivative compounds and FDA approved drug, Dasatinib are reported to inhibit PTK6 kinase activity with IC50 in nM range. To understand binding mode of these compounds and key interactions that drive the potency against PTK6, one of the IPA compounds and Dasatinib were chosen to study through X-ray crystallography. The recombinant PTK6 kinase domain was purified and co-crystallized at room temperature by the sitting-drop vapor diffusion method, collected X-ray diffraction data at in-house and resolved co-crystal structure of PTK6-KD with Dasatinib at 2.24 Å and with IPA compound at 1.70 Å resolution. Both these structures are in DFG-in & αC-helix-out conformation with unambiguous electron density for Dasatinib or IPA compound bound at the ATP-binding pocket. Relative difference in potency between Dasatinib and IPA compound is delineated through the additional interactions derived from the occupation of additional pocket by Dasatinib at gatekeeper area. Refined crystallographic coordinates for the kinase domain of PTK6 in complex with IPA compound and Dasatinib have been submitted to Protein Data Bank under the accession number 5DA3 and 5H2U respectively.


Assuntos
Aminas/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/química , Proteínas Tirosina Quinases/química , Trifosfato de Adenosina/química , Neoplasias da Mama/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Dasatinibe/química , Difusão , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imidazóis/química , Concentração Inibidora 50 , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
15.
Bioorg Med Chem Lett ; 26(8): 2065-7, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26951750

RESUMO

We report structure-guided modifications of the benzyloxy substituent of the Insulin-like Growth Factor-1 Receptor (IGF-1R) inhibitor NVP-AEW541. This chemical group has been shown to confer selectivity against other protein kinases but at the expense of a metabolism liability. X-ray crystallography has revealed that the benzyloxy moiety interacts with a lysine cation of the IGF-1R kinase domain via its ether function and its aromatic π-system and is nicely embedded in an induced hydrophobic pocket. We show that 1,4-diethers displaying an adequate hydrophobic and constrained shape are advantageous benzyloxy replacements. A single digit nanomolar inhibitor (compound 20, IC50=8.9 nM) was identified following this approach.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Receptor IGF Tipo 1/metabolismo , Relação Estrutura-Atividade
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2137-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457437

RESUMO

Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.


Assuntos
DNA/metabolismo , Deinococcus/enzimologia , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA/química , Deinococcus/química , Deinococcus/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência
17.
Bioorg Med Chem Lett ; 25(3): 438-43, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25571794

RESUMO

Adenoviral infections are associated with a wide range of acute diseases, among which ocular viral conjunctivitis (EKC) and disseminated disease in immunocompromised patients. To date, no approved specific anti-adenoviral drug is available, but there is a growing need for an effective treatment of such infections. The adenoviral protease, adenain, plays a crucial role for the viral lifecycle and thus represents an attractive therapeutic target. Structure-guided design with the objective to depeptidize tetrapeptide nitrile 1 led to the novel chemotype 2. Optimization of scaffold 2 resulted in picomolar adenain inhibitors 3a and 3b. In addition, a complementary series of irreversible vinyl sulfone containing inhibitors were rationally designed, prepared and evaluated against adenoviral protease. High resolution X-ray co-crystal structures of representatives of each series proves the successful design of these inhibitors and provides an excellent basis for future medicinal chemistry optimization of these compounds.


Assuntos
Adenoviridae/enzimologia , Antivirais/química , Cisteína Endopeptidases/química , Desenho de Fármacos , Inibidores de Proteases/química , Proteínas Virais/antagonistas & inibidores , Adenoviridae/efeitos dos fármacos , Antivirais/metabolismo , Antivirais/toxicidade , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/toxicidade , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
18.
J Enzyme Inhib Med Chem ; 30(6): 981-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26147347

RESUMO

The single-crystal structure of anagliptin, N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide, was determined. Two independent molecules were held together by intermolecular hydrogen bonds, and the absolute configuration of the 2-cyanopyrrolidine ring delivered from l-prolinamide was confirmed to be S. The interactions of anagliptin with DPP-4 were clarified by the co-crystal structure solved at 2.85 Å resolution. Based on the structure determined by X-ray crystallography, the potency and selectivity of anagliptin were discussed, and an SAR study using anagliptin derivatives was performed.


Assuntos
Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Cristalografia por Raios X , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/síntese química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Relação Estrutura-Atividade
19.
Acta Biochim Biophys Sin (Shanghai) ; 47(3): 192-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662390

RESUMO

Galectin-3 (Gal-3) which shows affinity of ß-galactosides is a cancer-related protein. Thus, it is important to understand its ligand binding mechanism and then design its specific inhibitor. It was suggested that the positions of water molecules in Gal-3 ligand-binding site could be replaced by appropriate chemical groups of ideal inhibitors. However, the reported structures of Gal-3 carbohydrate recognition domain (CRD) complexed with lactose showed that the number of water molecules are different and the water positions are inconsistent in the ligand-binding site. This study reported four high-resolution (1.24-1.19 Å) structures of Gal-3 CRD complexed with lactose, and accurately located 12 conserved water molecules in the water network of Gal-3 CRD ligand-binding site by merging these structures. These water molecules either directly stabilize the binding of Gal-3 CRD and lactose, or hold the former water molecules at the right place. In particular, water molecule 4 (W4) which only coordinates with water molecule 5 (W5) and water molecule 6 (W6) plays a key role in stabilizing galactose residue. In addition, by three-dimensional alignment of the positions of all residues, 14 flexible parts of Gal-3 CRD were found to dynamically fluctuate in the crystalline environment.


Assuntos
Galectina 3/antagonistas & inibidores , Galectina 3/química , Sítios de Ligação , Proteínas Sanguíneas , Cristalografia por Raios X , Desenho de Fármacos , Galectina 3/metabolismo , Galectinas , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Água/química
20.
Eur J Med Chem ; 252: 115306, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996714

RESUMO

Glutaminase-1 (GLS1) is a critical enzyme involved in several cellular processes, and its overexpression has been linked to the development and progression of cancer. Based on existing research, GLS1 plays a crucial role in the metabolic activities of cancer cells, promoting rapid proliferation, cell survival, and immune evasion. Therefore, targeting GLS1 has been proposed as a promising cancer therapy strategy, with several GLS1 inhibitors currently under development. To date, several GLS1 inhibitors have been identified, which can be broadly classified into two types: active site and allosteric inhibitors. Despite their pre-clinical effectiveness, only a few number of these inhibitors have advanced to initial clinical trials. Hence, the present medical research emphasizes the need for developing small molecule inhibitors of GLS1 possessing significantly high potency and selectivity. In this manuscript, we aim to summarize the regulatory role of GLS1 in physiological and pathophysiological processes. We also provide a comprehensive overview of the development of GLS1 inhibitors, focusing on multiple aspects such as target selectivity, in vitro and in vivo potency and structure-activity relationships.


Assuntos
Glutaminase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa