Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521050

RESUMO

Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.


Assuntos
DNA , Genômica , Simulação por Computador
2.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709385

RESUMO

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Assuntos
Catepsina B , Lisossomos , Pancreatite , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Lisossomos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/genética , Catepsina B/metabolismo , Catepsina B/genética , Camundongos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7/metabolismo , Doença Aguda , Células Acinares/metabolismo , Células Acinares/patologia , Tripsinogênio/metabolismo , Tripsinogênio/genética , Ceruletídeo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
J Proteome Res ; 23(4): 1131-1143, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417823

RESUMO

Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.


Assuntos
Simulação por Computador , Análise de Variância
4.
Physiol Plant ; 176(3): e14303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698659

RESUMO

Cotton is an important cash crop for the textile industry. However, the understanding of natural genetic variation of fiber elongation in relation to miRNA is lacking. A miRNA gene (miR477b) was found to co-localize with a previously mapped fiber length (FL) quantitative trait locus (QTL). The miR477b was differentially expressed during fiber elongation between two backcross inbred lines (BILs) differing in FL and its precursor sequences. Bioinformatics and qRT-PCR analysis were further used to analyse the miRNA genes, which could produce mature miR477b. Cotton plants with virus-induced gene silencing (VIGS) constructs to over-express the allele of miR477b from the BIL with longer fibers had significantly longer fibers as compared with negative control plants, while the VIGS plants with suppressed miRNA expression had significantly shorter fibers. The expression level of the target gene (DELLA) and related genes (RDL1 and EXPA1 for DELLA through HOX3 protein) in the two BILs and/or the VIGS plants were generally congruent, as expected. This report represents one of the first comprehensive studies to integrate QTL linkage mapping and physical mapping of small RNAs with both small and mRNA transcriptome analysis, followed by VIGS, to identify candidate small RNA genes affecting the natural variation of fiber elongation in cotton.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , MicroRNAs , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Gossypium/genética , Gossypium/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mapeamento Cromossômico , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892200

RESUMO

The pyoverdine siderophore is produced by Pseudomonas aeruginosa to access iron. Its synthesis involves the complex coordination of four nonribosomal peptide synthetases (NRPSs), which are responsible for assembling the pyoverdine peptide backbone. The precise cellular organization of these NRPSs and their mechanisms of interaction remain unclear. Here, we used a combination of several single-molecule microscopy techniques to elucidate the spatial arrangement of NRPSs within pyoverdine-producing cells. Our findings reveal that PvdL differs from the three other NRPSs in terms of localization and mobility patterns. PvdL is predominantly located in the inner membrane, while the others also explore the cytoplasmic compartment. Leveraging the power of multicolor single-molecule localization, we further reveal co-localization between PvdL and the other NRPSs, suggesting a pivotal role for PvdL in orchestrating the intricate biosynthetic pathway. Our observations strongly indicates that PvdL serves as a central orchestrator in the assembly of NRPSs involved in pyoverdine biosynthesis, assuming a critical regulatory function.


Assuntos
Oligopeptídeos , Peptídeo Sintases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Oligopeptídeos/biossíntese , Oligopeptídeos/metabolismo , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sideróforos/biossíntese , Sideróforos/metabolismo
6.
BMC Bioinformatics ; 23(1): 439, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271369

RESUMO

BACKGROUND: In fluorescence microscopy, co-localization refers to the spatial overlap between different fluorescent labels in cells. The degree of overlap between two or more channels in a microscope may reveal a physical interaction or topological functional interconnection between molecules. Recent advances in the imaging field require the development of specialized computational analysis software for the unbiased assessment of fluorescently labelled microscopy images. RESULTS: Here we present SpotitPy, a semi-automated image analysis tool for 2D object-based co-localization. SpotitPy allows the user to select fluorescent labels and perform a semi-automated and robust segmentation of the region of interest in distinct cell types. The workflow integrates advanced pre-processing manipulations for de-noising and in-depth semi-automated quantification of the co-localized fluorescent labels in two different channels. We validated SpotitPy by quantitatively assessing the presence of cytoplasmic ribonucleoprotein granules, e.g. processing (P) bodies, under conditions that challenge mRNA translation, thus highlighting SpotitPy benefits for semi-automatic, accurate analysis of large image datasets in eukaryotic cells. SpotitPy comes in a command line interface or a simple graphical user interphase and can be used as a standalone application. CONCLUSIONS: Overall, we present a novel and user-friendly tool that performs a semi-automated image analysis for 2D object-based co-localization. SpotitPy can provide reproducible and robust quantifications for large datasets within a limited timeframe. The software is open-source and can be found in the GitHub project repository: ( https://github.com/alexiaales/SpotitPy ).


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos
7.
Biochem Biophys Res Commun ; 612: 134-140, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525197

RESUMO

A/J mouse is a typical animal model of age-related deafness. Previous studies have shown that the mice suffer from progressive hearing loss and degeneration of cochlear cells, and a variation of H55 N in citrate synthase (CS) causes about 40% the hearing loss. CS is a key enzyme in the tricarboxylic acid cycle, which is transported from cytoplasm to mitochondria after synthesis, sorted by the mitochondrial targeting sequence (MTS). To explore the mechanism of CS (H55 N) variation in affecting its function, HEI-OC1 cells were infected with lentivirus particles to express CS-Flag or CS(H55 N)-Flag. The results showed that H55 N variation in CS, as purified by co-immunoprecipitation, decreased the enzyme activity by about 50%. Confocal microscope co-localization indicated that the CS (H55 N) variation led to a decrement in its mitochondrial content. Western blot also showed the amount of CS(H55 N)-Flag was more than that of CS(WT)-Flag in the cytosol. The results suggest H55 N variation in CS lead to decrement of its enzyme activity and targeting transport to mitochondria. We therefore conclude that decrement in CS activity and mitochondrial delivery contributes to the degeneration of cochlear cells and thus the hearing loss in A/J mice.


Assuntos
Perda Auditiva , Mitocôndrias , Animais , Citrato (si)-Sintase , Cóclea , Camundongos
8.
Br J Clin Pharmacol ; 88(4): 1904-1912, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34409637

RESUMO

AIMS: Little is known about the genetic basis of clozapine-related neutropaenia. This study aims to explore candidate genes and pathways involved in clozapine-related neutropaenia. METHODS: This study conducted a two-stage integrative analysis of the summary statistics from the genome-wide association study (GWAS, n = 552) of the lowest absolute neutrophil count (ANC) during clozapine treatment and the summary data of the expressed quantitative trait locus (eQTL). First, we use the probabilistic Mendelian randomization (PMR-Egger) to identify genes whose expression is causally related to ANC, and then use Bayesian co-localization analysis to investigate whether there are shared causal variants between them [posterior probability for hypotheses 4 (PP.H4) > 0.80]. Finally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore the pathways that may be associated with ANC during clozapine treatment. RESULTS: PMR-Egger analysis identified 146 genes that may be causally associated with ANC after Bonferroni correction (P-value < 3.25e-6). Bayesian co-localization analysis identified six further genes whose gene expression shared common variants with ANC, including NT5E (PP.H4 = 0.96), GLDC (PP.H4 = 0.82), NUDT17 (PP.H4 = 0.88), MSH4 (PP.H4 = 0.88), PTER (PP.H4 = 0.89) and SERPINB6 (PP.H4 = 0.83). Enrichment analysis identified 52 GO terms and seven pathways associated with ANC, such as NAD metabolic process, drug catabolic process and glyoxylate and dicarboxylate metabolism. CONCLUSION: This study identified multiple candidate genes and pathways that may be involved in clozapine-related neutropaenia, providing novel clues for the mechanism of clozapine-related neutropaenia.


Assuntos
Clozapina , Neutropenia , Teorema de Bayes , Clozapina/efeitos adversos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Neutropenia/induzido quimicamente , Neutropenia/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
9.
Pharm Res ; 39(6): 1181-1195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229237

RESUMO

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference. Calcium acetate as a remote loading agent allowed to engineer PSL- and NPSL-SN25860 with DL of > 31.1% (w/w). The IC50 of PSL-SN25860 was 21- and 141-fold lower than NPSL and free drug, respectively. At 48 h following injection of PSL-SN25860, NPSL-SN25860 and the free drug, drug concentrations in EMT6-nfsB murine breast tumors were 56.3 µg/g, 6.76 µg/g and undetectable (< 0.015 µg/g), respectively (n = 3). Meanwhile, the ex vivo tumor clonogenic assay showed 9.1%, 19.4% and 42.7% cell survival in the respective tumors. Live-cell imaging and co-localization analysis suggested endosomal escape was accomplished by destabilization of PSL followed by release of Ca2+ in endosomes allowing induction of a proton sponge effect. Subsequent endosomal rupture was observed approximately 30 min following endocytosis of PSL containing Ca2+. Additionally, calcium in liposomes promoted internalization of both PSL and NPSL. Taken together, this study demonstrated multifaceted functions of calcium acetate in promoting drug loading into liposomes, cellular uptake, and endosomal escape of PSL for efficient cytoplasmic drug delivery. The results shed light on designing nano-platforms for cytoplasmic delivery of various therapeutics.


Assuntos
Lipossomos , Neoplasias , Animais , Cálcio , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Endossomos , Concentração de Íons de Hidrogênio , Lipossomos/farmacologia , Camundongos , Prótons
10.
Mikrochim Acta ; 189(5): 182, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394232

RESUMO

Programed cell death ligand 1 (PD-L1) is a protein biomarker overexpressed on exosomes derived from tumor cells. It plays an important role in tumor diagnosis, screening, evaluation of therapeutic efficacy, and prognosis. In this study, a facile method is presented to detect PD-L1-overexpressing cancer exosomes with high specificity and sensitivity. First, gold nanospheres (GNSs) were attached to the bottom of an eight-well chambered slide by electrostatic adsorption, forming the detection substrate. Then, Cy5-labeled CD63 aptamers (i.e., the capture probes) were modified on the GNSs by Au-S bond. After adding samples containing target exosomes which were stained by membrane dyes DiI in advance, FAM-labeled PD-L1 aptamers (i.e., the immunoprobes) were added to recognize PD-L1 on the target exosomes. By triple-color fluorescence co-localization (TFC) of the Cy5, DiI, and FAM channels, highly sensitive and reliable detection of the PD-L1-overexpressing exosomes was achieved in the concentration range 7.78 × 101 to 7.78 × 104 particles/mL with a detection limit down to 6 particles/mL. The advantages of the proposed detection method include the following; first, the detection substrate is easy to prepare and convenient to clean. Second, the TFC strategy can completely exclude nonspecific reaction sites and thus significantly improves the accuracy. Such a facile and reliable detection method holds a great potential in exosome-based cancer theranostics. In this paper, we proposed a triple-color fluorescence co-localization (TFC) strategy to significantly improve the reliability of exosome detection and the detection substrate is easy to prepare and convenient to clean. In addition, the LOD is down to 6 particles/mL, which is quite low compared with other detection methods.


Assuntos
Exossomos , Neoplasias , Antígeno B7-H1/análise , Antígeno B7-H1/metabolismo , Exossomos/química , Ouro/química , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Reprodutibilidade dos Testes
11.
J Hepatol ; 75(3): 572-581, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033851

RESUMO

BACKGROUNDS & AIMS: Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. METHODS: We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. RESULTS: We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57th genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (TH)1 and TH17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. CONCLUSIONS: This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. LAY SUMMARY: Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these 'candidate genes' to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC.


Assuntos
Estudo de Associação Genômica Ampla/estatística & dados numéricos , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/genética , Estudo de Associação Genômica Ampla/métodos , Humanos
12.
Am J Hum Genet ; 102(6): 1169-1184, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805045

RESUMO

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.


Assuntos
Estudo de Associação Genômica Ampla , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Células Cultivadas , Epigênese Genética , Genoma Humano , Humanos
13.
Cell Microbiol ; 22(6): e13182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017380

RESUMO

Previous studies have shown that Pneumocystis binds to pneumocytes, but the proteins responsible for binding have not been well defined. Mucins are the major glycoproteins present in mucus, which serves as the first line of defence during airway infection. MUC1 is the best characterised membrane-tethered mucin and is expressed on the surface of most airway epithelial cells. Although by electron microscopy Pneumocystis primarily binds to type I pneumocytes, it can also bind to type II pneumocytes. We hypothesized that Pneumocystis organisms can bind to MUC1 expressed by type II pneumocytes. Overexpression of MUC1 in human embryonic kidney HEK293 cells increased Pneumocystis binding, while knockdown of MUC1 expression by siRNA in A549 cells, a human adenocarcinoma-derived alveolar type II epithelial cell line, decreased Pneumocystis binding. Immunofluorescence labelling indicated that MUC1 and Pneumocystis were co-localised in infected mouse lung tissue. Incubation of A549 cells with Pneumocystis led to phosphorylation of ERK1/2 that increased with knockdown of MUC1 expression by siRNA. Pneumocystis caused increased IL-6 and IL-8 secretion by A549 cells, and knockdown of MUC1 further increased their secretion in A549 cells. Taken together, these results suggest that binding of Pneumocystis to MUC1 expressed by airway epithelial cells may facilitate establishment of productive infection.


Assuntos
Células Epiteliais/metabolismo , Mucina-1/metabolismo , Pneumocystis/metabolismo , Células A549 , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pulmão , Sistema de Sinalização das MAP Quinases , Camundongos , Mucina-1/genética , Fosforilação , RNA Interferente Pequeno , Transcriptoma
14.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768896

RESUMO

G protein-coupled estrogen receptor 1 (GPER1) is a potential therapeutic target for treating triple-negative breast cancers (TNBC). However, modulators for GPER1 that can be used to treat TNBC have not appeared. Berberine (BBR) is a bioactive isoquinoline alkaloid with high oral safety. In recent years, BBR has shown an inhibitory effect on TNBC tumors such as MDA-MB-231, but the molecular target remains unclear, which hinders related clinical research. Our work proved that BBR is a modulator of GPER1 that can inhibit cell viability, migration, and autophagy of MDA-MB-231 cells. The inhibitory effect of BBR on MDA-MB-231 cells has a dependence on estrogen levels. Although BBR promoted the proteasome, which is a major factor in the degradation of GPER1, it could still induce the protein level of GPER1. Correspondingly, the transcription of cellular communication network factor 2 (CCN2) was promoted. BBR could bind to GPER1 directly and change the secondary structure of GPER1, as in the case of 17ß-estradiol (E2). In addition, BBR induced not only a high degree of co-localization of GPER1 and microtubule-associated protein 1 light chain 3 (MAP1LC3), but also the accumulation of sequestosome 1 (SQSTM1/p62) by the inhibition of the nuclear translocation of the nuclear factor-kappa B (NF-κB) subunit (RELA/p65), which indicates NF-κB inhibition and anti-cancer effects. This result proved that the promotional effect of BBR on the GPER1/NF-κB pathway was closely related to its inhibitory effect on autophagy, which may serve as a new mechanism by which to explain the inhibitory effect of BBR on MDA-MB-231 cells and expand our understanding of the function of both BBR and GPER1.


Assuntos
Berberina/farmacologia , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Neoplasias de Mama Triplo Negativas , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
15.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073512

RESUMO

Gene clusters are becoming promising tools for gene identification. The study reveals the purposive genomic distribution of genes toward higher inheritance rates of intact metabolic pathways/phenotypes and, thereby, higher fitness. The co-localization of co-expressed, co-interacting, and functionally related genes was found as genome-wide trends in humans, mouse, golden eagle, rice fish, Drosophila, peanut, and Arabidopsis. As anticipated, the analyses verified the co-segregation of co-localized events. A negative correlation was notable between the likelihood of co-localization events and the inter-loci distances. The evolution of genomic blocks was also found convergent and uniform along the chromosomal arms. Calling a genomic block responsible for adjacent metabolic reactions is therefore recommended for identification of candidate genes and interpretation of cellular functions. As a case story, a function in the metabolism of energy and secondary metabolites was proposed for Slc25A44, based on its genomic local information. Slc25A44 was further characterized as an essential housekeeping gene which has been under evolutionary purifying pressure and belongs to the phylogenetic ETC-clade of SLC25s. Pathway enrichment mapped the Slc25A44s to the energy metabolism. The expression of peanut and human Slc25A44s in oocytes and Saccharomyces cerevisiae strains confirmed the transport of common precursors for secondary metabolites and ubiquinone. These results suggest that SLC25A44 is a mitochondrion-ER-nucleus zone transporter with biotechnological applications. Finally, a conserved three-amino acid signature on the cytosolic face of transport cavity was found important for rational engineering of SLC25s.


Assuntos
Sistemas de Transporte de Aminoácidos , Evolução Molecular , Genoma Humano , Proteínas Mitocondriais , Proteínas Carreadoras de Solutos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Carreadoras de Solutos/genética , Proteínas Carreadoras de Solutos/metabolismo , Xenopus
16.
J Cell Sci ; 131(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439158

RESUMO

Fluorescence image co-localization analysis is widely utilized to suggest biomolecular interaction. However, there exists some confusion as to its correct implementation and interpretation. In reality, co-localization analysis consists of at least two distinct sets of methods, termed co-occurrence and correlation. Each approach has inherent and often contrasting strengths and weaknesses. Yet, neither one can be considered to always be preferable for any given application. Rather, each method is most appropriate for answering different types of biological question. This Review discusses the main factors affecting multicolor image co-occurrence and correlation analysis, while giving insight into the types of biological behavior that are better suited to one approach or the other. Further, the limits of pixel-based co-localization analysis are discussed in the context of increasingly popular super-resolution imaging techniques.


Assuntos
Processamento de Imagem Assistida por Computador , Algoritmos , Imageamento Tridimensional , Razão Sinal-Ruído
17.
Plant Biotechnol J ; 18(1): 207-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199064

RESUMO

Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Zea mays/crescimento & desenvolvimento
18.
Pancreatology ; 20(8): 1620-1630, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33077383

RESUMO

BACKGROUND & AIM: Fatty acid ethyl esters (FAEEs), are produced by non-oxidative alcohol metabolism and can cause acinar cell damage and subsequent acute pancreatitis in rodent models. Even though experimental studies have elucidated the FAEE mediated early intra-acinar events, these mechanisms have not been well studied in humans. In the present study, we evaluate the early intra-acinar events and inflammatory response in human pancreatic acinar tissues and cells in an ex-vivo model. METHODS: Experiments were conducted using normal human pancreatic tissues exposed to FAEE. Subcellular fractionation was performed on tissue homogenates and trypsin and cathepsin B activities were estimated in these fractions. Acinar cell injury was evaluated by histology and immunohistochemistry. Cytokine release from exposed acinar cells was evaluated by performing Immuno-fluorescence. Serum was collected from patients with AP within the first 72 h of symptom onset for cytokine estimation using FACS. RESULTS: We observed significant trypsin activation and acinar cell injury in FAEE treated tissue. Cathepsin B was redistributed from lysosomal to zymogen compartment at 30 min of FAEE exposure. IHC results indicated the presence of apoptosis in pancreatic tissue at 1 & 2hrs of FAEE exposure. We also observed a time dependent increase in secretion of cytokines IL-6, IL-8, TNF-α from FAEE treated acinar tissue. There was also a significant elevation in plasma cytokines in patents with alcohol associated AP within 72 h of symptom onset. CONCLUSION: Our data suggest that alcohol metabolites can cause acute acinar cell damage and subsequent cytokine release which could eventually culminant in SIRS.


Assuntos
Ésteres , Ácidos Graxos , Pancreatite , Células Acinares/metabolismo , Apoptose , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Humanos , Pâncreas/metabolismo , Pancreatite/metabolismo
19.
Exp Cell Res ; 375(2): 72-79, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597143

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is important in various cellular processes including mitochondrial homeostasis and mutations in this gene lead to Parkinson's disease (PD). However, the full spectrum of LRRK2's functions remain to be elucidated. The translocase of outer mitochondrial membrane (TOM) complex is essential for the import of almost all nuclear-encoded mitochondrial proteins and is fundamental for cellular survival. Using co-immunoprecipitation, super-resolution structured illumination microscopy (SR-SIM), and 3D virtual reality (VR) assisted co-localization analysis techniques we show that wild-type and mutant (G2019S) LRRK2 associate and co-localize with subunits of the TOM complex, either under basal (dimethyl sulfoxide, DMSO) or stress-induced (carbonyl cyanide m-chlorophenyl hydrazine, CCCP) conditions. Interestingly, LRRK2 interacted with TOM40 under both DMSO and CCCP conditions, and when the PD causing mutation, G2019S was introduced, the association was not altered. Moreover, overexpression of G2019S LRRK2 resulted in the formation of large, perinuclear aggregates that co-localized with the TOM complex. Taken together, this is the first study to show that both WT and mutant LRRK2 associate with the TOM complex subunits. These findings provide additional evidence for LRRK2's role in mitochondrial function which has important implications for its role in PD pathogenesis.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Ligação Proteica
20.
Appl Microbiol Biotechnol ; 104(17): 7313-7329, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32651598

RESUMO

Bacterial inclusion bodies (IBs) have long been considered as inactive, unfolded waste material produced by heterologous overexpression of recombinant genes. In industrial applications, they are occasionally used as an alternative in cases where a protein cannot be expressed in soluble form and in high enough amounts. Then, however, refolding approaches are needed to transform inactive IBs into active soluble protein. While anecdotal reports about IBs themselves showing catalytic functionality/activity (CatIB) are found throughout literature, only recently, the use of protein engineering methods has facilitated the on-demand production of CatIBs. CatIB formation is induced usually by fusing short peptide tags or aggregation-inducing protein domains to a target protein. The resulting proteinaceous particles formed by heterologous expression of the respective genes can be regarded as a biologically produced bionanomaterial or, if enzymes are used as target protein, carrier-free enzyme immobilizates. In the present contribution, we review general concepts important for CatIB production, processing, and application. KEY POINTS: • Catalytically active inclusion bodies (CatIBs) are promising bionanomaterials. • Potential applications in biocatalysis, synthetic chemistry, and biotechnology. • CatIB formation represents a generic approach for enzyme immobilization. • CatIB formation efficiency depends on construct design and expression conditions.


Assuntos
Escherichia coli , Corpos de Inclusão , Biocatálise , Biotecnologia , Escherichia coli/genética , Corpos de Inclusão/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa