Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Fish Shellfish Immunol ; 151: 109745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960105

RESUMO

Iron homeostasis is vital for the host's defense against pathogenic invasion and the ferritinophagy is a crucial mechanism in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron. The nuclear receptor coactivator 4 (NCOA4) serves as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome. However, NCOA4 of the sea cucumber Apostichopus japonicus (AjNCOA4) has not been reported until now. In this study, we identified and characterized AjNCOA4 in A. japonicus. This gene encodes a polypeptide containing 597 amino acids with an open reading frame of 1794 bp. The inferred amino acid sequence of AjNCOA4 comprises an ARA70 domain. Furthermore, a multiple sequence alignment demonstrated varying degrees of sequence homology between AjNCOA4 from A. japonicus and other NCOA4 orthologs. The phylogenetic tree of NCOA4 correlates with the established timeline of metazoan evolution. Expression analysis revealed that AjNCOA4 is expressed in all tested tissues, including the body wall, muscle, intestine, respiratory tree, and coelomocytes. Following challenge with Vibrio splendidus, the coelomocytes exhibited a significant increase in AjNCOA4 mRNA levels, peaking at 24 h. We successfully obtained recombinant AjNCOA4 protein through prokaryotic expression and prepared a specific polyclonal antibody. Immunofluorescence and co-immunoprecipitation experiments demonstrated an interaction between AjNCOA4 and AjFerritin in coelomocytes. RNA interference-mediated knockdown of AjNCOA4 expression resulted in elevated iron ion levels in coelomocytes. Bacterial stimulation enhanced ferritinophagy in coelomocytes, while knockdown of AjNCOA4 reduced the occurrence of ferritinophagy. These findings suggest that AjNCOA4 modulates ferritinophagy induced by V. splendidus in coelomocytes of A. japonicus.


Assuntos
Sequência de Aminoácidos , Ferritinas , Coativadores de Receptor Nuclear , Filogenia , Alinhamento de Sequência , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Stichopus/microbiologia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/imunologia , Ferritinas/genética , Ferritinas/imunologia , Ferritinas/metabolismo , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Autofagia , Sequência de Bases
2.
Artigo em Inglês | MEDLINE | ID: mdl-38992416

RESUMO

Due to their tissue structure similar to mammalian skin and their close evolutionary relationship with chordates, holothurians (Echinodermata: Holothuroidea) are particularly interesting for studies on wound healing. However, previous studies dealing with holothuroid wound healing have had limited approaches, being restricted to tissue repair or perivisceral immune response. In this study, we combined tissue, cellular and humoral parameters to study the wound healing process of Holothuria grisea. The immune responses of the perivisceral coelom were assessed by analyzing the number, proportion and viability of coelomocytes and the volume and protein concentration of the coelomic fluid. Additionally, the morphology of the healing tissue and number of coelomocytes in the connective tissue of different body wall layers were examined over 30 days. Our results showed that perivisceral reactions started 3 h after injury and decreased to baseline levels within 24 h. In contrast, tissue responses were delayed, beginning after 12 h and returning to baseline levels only after day 10. The number of coelomocytes in the connective tissue suggests a potential cooperation between these cells during wound healing: phagocytes and acidophilic spherulocytes act together in tissue clearance/homeostasis, whereas fibroblast-like and morula cells cooperate in tissue remodeling. Finally, our results indicate that the major phases observed in mammalian wound healing are also observed in H. grisea, despite occurring at a different timing, which might provide insights for future studies. Based on these data, we propose a model that explains the entire healing process in H. grisea.


Assuntos
Holothuria , Cicatrização , Animais , Cicatrização/fisiologia , Holothuria/fisiologia , Imunidade Humoral
3.
J Environ Manage ; 351: 119990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183952

RESUMO

Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/metabolismo , Oligoquetos/metabolismo , Estresse Oxidativo , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Solo , Biomarcadores/metabolismo
4.
J Exp Zool B Mol Dev Evol ; 340(1): 34-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438249

RESUMO

Organization and functioning of immune system remain unevenly studied in different taxa of lophotrochozoan animals. We analyzed transcriptomic data on coelomocytes of the lugworm Arenicola marina (Linnaeus, 1758; Annelida, Polychaeta) to gain insights into the molecular mechanisms involved in polychaete immunity. Coelomocytes are specialized motile cells populating coelomic fluid of annelids, responsible for cellular defense reactions and providing humoral immune factors. The transcriptome was enriched with immune-related transcripts by challenging the cells in vitro with lipopolysaccharides of Escherichia coli and Zymosan from Saccharomyces cerevisiae. Our analysis revealed a multifaceted and complex internal defense system of the lugworm. A. marina possesses orthologs of proto-complement-like factors: six thioester-containing proteins, a complement-like receptor, and a MASP-related serine protease (MReM2). A. marina coelomocytes employ pattern-recognition receptors to detect pathogens and regulate immune responses. Among them, there are 18 Toll-like receptors and various putative lectin-like proteins with evolutionary conserved and taxa-specific domains. C-type lectins and a novel family of Gal-binding and CUB domains containing receptors were the most abundant in the transcriptome. The array of pore-forming proteins in the coelomocytes was surprisingly reduced compared to that of other invertebrate species. We characterized a set of conserved proteins metabolizing reactive oxygen species and nitric oxide and expanded the arsenal of potential antimicrobial peptides. Phenoloxidase activity in immune cells of lugworm is mediated only by laccase enzyme. The described repertoire of immune-associated molecules provides valuable candidates for further functional and comparative research on the immunity of annelids.


Assuntos
Anelídeos , Poliquetos , Animais , Poliquetos/genética , Transcriptoma , Perfilação da Expressão Gênica , Invertebrados
5.
Cell Tissue Res ; 394(2): 293-308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37606764

RESUMO

The potential to regenerate a damaged body part is expressed to a different extent in animals. Echinoderms, in particular starfish, are known for their outstanding regenerating potential. Differently, humans have restricted abilities to restore organ systems being dependent on limited sources of stem cells. In particular, the potential to regenerate the central nervous system is extremely limited, explaining the lack of natural mechanisms that could overcome the development of neurodegenerative diseases and the occurrence of trauma. Therefore, understanding the molecular and cellular mechanisms of regeneration in starfish could help the development of new therapeutic approaches in humans. In this study, we tackle the problem of starfish central nervous system regeneration by examining the external and internal anatomical and behavioral traits, the dynamics of coelomocyte populations, and neuronal tissue architecture after radial nerve cord (RNC) partial ablation. We noticed that the removal of part of RNC generated several anatomic anomalies and induced behavioral modifications (injured arm could not be used anymore to lead the starfish movement). Those alterations seem to be related to defense mechanisms and protection of the wound. In particular, histology showed that tissue patterns during regeneration resemble those described in holothurians and in starfish arm tip regeneration. Flow cytometry coupled with imaging flow cytometry unveiled a new coelomocyte population during the late phase of the regeneration process. Morphotypes of these and previously characterized coelomocyte populations were described based on IFC data. Further studies of this new coelomocyte population might provide insights on their involvement in radial nerve cord regeneration.


Assuntos
Nervo Radial , Pepinos-do-Mar , Animais , Humanos , Nervo Radial/fisiologia , Estrelas-do-Mar/fisiologia , Regeneração Nervosa/fisiologia
6.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
7.
J Invertebr Pathol ; 201: 107999, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813149

RESUMO

Epibiotic species, which may be characterized as those living attached to the outer surface of a host (the basibiont), have hardly been described as living on echinoderms, probably because the outer surface of these latter is covered by the epidermis. Studies analyzing epibiotic associations usually focus on taxonomical and ecological aspects, while a physiological approach - even being able to reveal the costs and/or benefits of such interactions - has been neglected. Here, we not only report an unprecedented algal epibiotic association for the sea urchin Echinometra lucunter, but we mainly investigate how such kind of interaction could affect spine morphology and basibiont physiology, and consequently its health. To achieve this, we compared the spine morphology of Echinometra lucunter with and without algal infestation using histology, microcomputed tomography, and SEM. Immunological parameters, such as the number, proportion, and viability of the coelomocytes were evaluated. Algal-infested individuals showed a higher number and lower viability of coelomocytes, as well as an altered proportion of phagocytes and red spherulocytes. Additionally, spine stroma and stereom were severely degraded in comparison to non-infested ones. Thus, our findings suggest that algal-infested E. lucunter may be less efficient in carrying out routine activities than non-infested individuals, such as physical protection, anchorage, or coping with immune challenges.


Assuntos
Equinodermos , Ouriços-do-Mar , Humanos , Animais , Microtomografia por Raio-X , Fagócitos
8.
Cell Tissue Res ; 383(3): 1043-1060, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33237478

RESUMO

The origin of cells involved in regeneration in echinoderms remains an open question. Replenishment of circulatory coelomocytes-cells of the coelomic cavity in starfish-is an example of physiological regeneration. The coelomic epithelium is considered to be the main source of coelomocytes, but many details of this process remain unclear. This study examined the role of coelomocytes outside circulation, named marginal coelomocytes and small undifferentiated cells of the coelomic epithelium in coelomocyte replenishment in Asterias rubens. A qualitative and quantitative comparison of circulatory and marginal coelomocytes, as well as changes of circulatory coelomocyte concentrations in response to injury at different physiological statuses, was analysed. The presence of cells morphologically similar to coelomocytes in the context of coelomic epithelium was evaluated by electron microscopy. The irregular distribution of small cells on the surface and within the coelomic epithelium was demonstrated and the origin of small undifferentiated cells and large agranulocytes from the coelomic epithelium was suggested. Two events have been proposed to mediate the replenishment of coelomocytes in the coelom: migration of mature coelomocytes of the marginal cell pool and migration of small undifferentiated cells of the coelomic epithelium. The proteomic analysis of circulatory coelomocytes, coelomic epithelial cells and a subpopulation of coelomic epithelial cells, enriched in small undifferentiated cells, revealed proteins that were common and specific for each cell pool. Among these molecules were regulatory proteins, potential participants of regenerative processes.


Assuntos
Asterias/fisiologia , Células Epiteliais , Epitélio/fisiologia , Regeneração , Animais , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Proteoma/metabolismo
9.
Fish Shellfish Immunol ; 117: 253-261, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418557

RESUMO

The sea urchin Lytechinus variegatus is considered a good candidate for aquaculture, but bacterial diseases are a major challenge in culture conditions. The innate immunological defenses of L. variegatus to bacterial challenges were assessed through hematology parameters, in vitro phagocytosis, lysozyme activity and total plasma protein concentrations in cell-free coelomic fluid. Adult sea urchins were inoculated with Microccocus lysodeikticus, Escherichia coli and Vibrio parahaemolyticus in the cavity coelomic. Filtrated and sterile seawater (FSW) injected and non-injected sea urchins were used as control groups. Righting time, external aspects and behavior of sea urchins were evaluated. Twenty-four hours post-inoculation, we found an increase in the population of colorless spherule cells (CLS), phagocytosis, and humoral responses in sea urchins challenged by bacterial inoculations. Righting time was not affected by the treatments and apparent external signs of disease were not observed at least during 96h post-inoculation. The immunological system of L. variegatus quickly eliminated pathogenic microorganisms. CLS and lysozyme activity cooperate in the immune defenses of L. variegatus, showing an extraordinary efficiency for adjusting the immune defenses under stress caused by microbes. We recommend that the cellular and humoral markers serve as routine tests to monitor health status in sea urchins.


Assuntos
Lytechinus/imunologia , Animais , Escherichia coli , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Imunidade Inata , Lytechinus/citologia , Lytechinus/microbiologia , Micrococcus , Muramidase/imunologia , Fagocitose , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus
10.
Environ Sci Technol ; 55(12): 7990-8000, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018718

RESUMO

The sea urchin Paracentrotus lividus (P. lividus) was exposed to either virgin or biofilm-covered polystyrene microbeads (micro-PS, 45 µm) in order to test the effect of microbial colonization on the uptake, biodistribution, and immune response. The biofilm was dominated by bacteria, as detected by scanning electron microscopy and 16S rRNA sequencing. A higher internalization rate of colonized micro-PS inside sea urchins compared to virgin ones was detected, suggesting a role of the plastisphere in the interaction. Colonized and virgin micro-PS showed the same biodistribution pattern by accumulating mainly in the digestive system with higher levels and faster egestion rates for the colonized. However, a significant increase of catalase and total antioxidant activity was observed only in the digestive system of colonized micro-PS-exposed individuals. Colonized micro-PS also induced a significant decrease in the number of coelomocytes with a significant increase in vibratile cells, compared to control and virgin micro-PS-exposed animals. Moreover, a general time-dependent increase in the red/white amoebocytes ratio and reactive oxygen species and a decrease in nitrogen ones were observed upon exposure to both colonized and virgin micro-PS. Overall, micro-PS colonization clearly affected the uptake and toxicological responses of the Mediterranean sea urchin P. lividus in comparison to virgin micro-PS.


Assuntos
Paracentrotus , Animais , Microesferas , Paracentrotus/genética , Poliestirenos , RNA Ribossômico 16S , Ouriços-do-Mar , Distribuição Tecidual
11.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916228

RESUMO

Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.


Assuntos
Arginase/metabolismo , Imunidade Inata , Oligoquetos/enzimologia , Oligoquetos/imunologia , Animais , Metais Pesados , Rabditídios
12.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673408

RESUMO

Regeneration of body parts and their interaction with the immune response is a poorly understood aspect of earthworm biology. Consequently, we aimed to study the mechanisms of innate immunity during regeneration in Eisenia andrei earthworms. In the course of anterior and posterior regeneration, we documented the kinetical aspects of segment restoration by histochemistry. Cell proliferation peaked at two weeks and remitted by four weeks in regenerating earthworms. Apoptotic cells were present throughout the cell renewal period. Distinct immune cell (e.g., coelomocyte) subsets were accumulated in the newly-formed blastema in the close proximity of the apoptotic area. Regenerating earthworms have decreased pattern recognition receptors (PRRs) (e.g., TLR, except for scavenger receptor) and antimicrobial peptides (AMPs) (e.g., lysenin) mRNA patterns compared to intact earthworms. In contrast, at the protein level, mirroring regulation of lysenins became evident. Experimental coelomocyte depletion caused significantly impaired cell divisions and blastema formation during anterior and posterior regeneration. These obtained novel data allow us to gain insight into the intricate interactions of regeneration and invertebrate innate immunity.


Assuntos
Imunidade Inata , Oligoquetos/fisiologia , Regeneração , Ferimentos e Lesões , Animais , Apoptose , Proliferação de Células , Regulação da Expressão Gênica , Oligoquetos/genética , Oligoquetos/imunologia , Toxinas Biológicas
13.
BMC Genomics ; 21(1): 306, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299355

RESUMO

BACKGROUND: The sea cucumber Holothuria leucospilota belongs to echinoderm, which is evolutionally the most primitive group of deuterostomes. Sea cucumber has a cavity between its digestive tract and the body wall that is filled with fluid and suspended coelomic cells similar to blood cells. The humoral immune response of the sea cucumber is based on the secretion of various immune factors from coelomocytes into the coelomic cavity. The aim of this study is to lay out a foundation for the immune mechanisms in echinoderms and their origins in chordates by using RNA-seq. RESULTS: Sea cucumber primary coelomocytes were isolated from healthy H. leucospilota and incubated with lipopolysaccharide (LPS, 10 µg/ml), polyinosinic-polycytidylic acid [Poly (I:C), 10 µg/ml] and heat-inactived Vibrio harveyi (107 cell/ml) for 24 h, respectively. After high-throughput mRNA sequencing on an Illumina HiSeq2500, a de novo transcriptome was assembled and the Unigenes were annotated. Thirteen differentially expressed genes (DEGs) were selected randomly from our data and subsequently verified by using RT-qPCR. The results of RT-qPCR were consistent with those of the RNA-seq (R2 = 0.61). The top 10 significantly enriched signaling pathways and immune-related pathways of the common and unique DEGs were screened from the transcriptome data. Twenty-one cytokine candidate DEGs were identified, which belong to 4 cytokine families, namely, BCL/CLL, EPRF1, IL-17 and TSP/TPO. Gene expression in response to LPS dose-increased treatment (0, 10, 20 and 50 µg/ml) showed that IL-17 family cytokines were significantly upregulated after 10 µg/ml LPS challenge for 24 h. CONCLUSION: A de novo transcriptome was sequenced and assembled to generate the gene expression profiling across the sea cucumber coelomocytes treated with LPS, Poly (I:C) and V. harveyi. The cytokine genes identified in DEGs could be classified into 4 cytokine families, in which the expression of IL-17 family cytokines was most significantly induced after 10 µg/ml LPS challenge for 24 h. Our findings have laid the foundation not only for the research of molecular mechanisms related to the immune response in echinoderms but also for their origins in chordates, particularly in higher vertebrates.


Assuntos
Citocinas/genética , Imunidade Humoral/genética , Pepinos-do-Mar/genética , Pepinos-do-Mar/imunologia , Animais , Cordados/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lipopolissacarídeos , Poli I-C , RNA Mensageiro/genética , RNA-Seq , Pepinos-do-Mar/citologia , Vibrio
14.
Fish Shellfish Immunol ; 107(Pt A): 187-193, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32971271

RESUMO

In echinoderms, the immune system plays a relevant role in defense against infection by pathogens. Particularly, in sea urchins, the immune system has been shown to be complex, especially in terms of the variety of immune genes and molecules described. A key component of the response to external pathogens are the Toll-like receptors (TLRs), which are a well-characterized class of pattern recognition receptors (PRRs) that participate in the recognition of pathogen-associated molecular patterns (PAMPs). Despite the fact that TLRs have been described in several sea urchin species, for the red sea urchin (Loxechinus albus), which is one of the most important sea urchins across the world in terms of fisheries, limited information on the TLR-mediated immune response exists. In the present study, for the first time, we evaluated the effect of thermal stress, LPS and poly I:C treatment on the coelomocyte immune response of Loxechinus albus to determine how these factors modulate TLR and strongylocin (antimicrobial peptides of echinoderms) responses. We show that the tlr3-like, tlr4-like, tlr6-like and tlr8-like transcripts are modulated by poly I:C, while LPS only modulates the tlr4-like response; there was no effect of temperature on TLR expression, as evaluated by RT-qPCR. Additionally, we showed that strongylocin-1 and strongylocin-2 are modulated in response to simulated viral infection with poly I:C, providing the first evidence of strongylocin expression in L. albus. Finally, we determined that temperature and LPS modify the viability of coelomocytes, while poly I:C treatment did not affect the viability of these cells. This study contributes to the knowledge of immune responses in sea urchins to improve the understanding of the role of TLRs and strongylocins in echinoderms.


Assuntos
Imunidade , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Ouriços-do-Mar/imunologia , Temperatura , Animais
15.
Dis Aquat Organ ; 142: 63-73, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210613

RESUMO

Echinoderms such as sea urchins are important in marine ecosystems, particularly as grazers, and unhealthy sea urchins can have important ecological implications. For instance, unexplained mortalities of Diadema antillarum in the Caribbean were followed by algal overgrowth and subsequent collapse of coral reef ecosystems. Unfortunately, few tools exist to evaluate echinoderm health, making management of mortalities or other health issues problematic. Hematology is often used to assess health in many animal groups, including invertebrates, but is seldom applied to echinoderms. We used a standard gravitometric technique to concentrate fixed coelomocytes from the collector sea urchin Tripneustes gratilla onto microscope slides, permitting staining and enumeration. Using Romanowsky stain and electron microscopy to visualize cell details, we found that urchin cells could be partitioned into different morphotypes. Specifically, we enumerated phagocytes, phagocytes with perinuclear cytoplasmic dots, vibratile cells, colorless spherule cells, red spherule cells, and red spherule cells with pink granules. We also saw cell-in-cell interactions characterized by phagocytes apparently phagocytizing mainly the motile cells including red spherule cells, colorless spherule cells, and vibratile cells disproportionate to underlying populations of circulating cells. Cell-in-cell interactions were seen in 71% of sea urchins, but comprised <1% of circulating cells. Finally, about 40% of sea urchins had circulating phagocytes that were apparently phagocytizing spicules. The coelomic fluid collection and slide preparation methods described here are simple, field portable, and might be a useful complementary tool for assessing health of other marine invertebrates, revealing heretofore unknown physiological phenomena in this animal group.


Assuntos
Ecossistema , Ouriços-do-Mar , Animais , Região do Caribe , Comunicação Celular , Recifes de Corais
16.
Ecotoxicol Environ Saf ; 197: 110618, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302861

RESUMO

Benzotriazole (BTR) is a common corrosion inhibitor used to protect copper (Cu) and Cu alloys. To reveal the combined subacute toxicity of BTR and Cu at environmental levels on terrestrial animals, the activity of antioxidative enzymes and the glutathione levels in earthworms (Eisenia fetida) of the single or co-exposure treatments were determined. The activity of both antioxidant enzymes and non-enzymatic antioxidants was affected by BTR in earthworms. Moreover, the analyses of lysosomal neutral red retention time and total antioxidant capacity indicated a detoxification effect of BTR on Cu-induced impairments of the antioxidant defense capacity in earthworms. The apoptotic rate of coelomocytes in earthworms of the co-exposure treatment was lower than that in earthworms treated with Cu only, indicating that BTR alleviates Cu mediated lysosomal membrane damage and antioxidant defense system responses in earthworms.


Assuntos
Cobre/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose , Interações Medicamentosas , Glutationa/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Oligoquetos/enzimologia , Oligoquetos/metabolismo
17.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963425

RESUMO

The heavy metal cadmium (Cd) is known to modulate the immune system, challenging soil-dwelling organisms where environmental Cd pollution is high. Since earthworms lack adaptive immunity, we determined Cd-related effects on coelomocytes, the cellular part of innate immunity, which is also the site of detoxification processes. A proteomics approach revealed a set of immunity-related proteins as well as gene products involved in energy metabolism changing in earthworms in response to Cd exposure. Based on these results, we conducted extracellular flux measurements of oxygen and acidification to reveal the effect of Cd on coelomocyte metabolism. We observed a significantly changing oxygen consumption rate, extracellular acidification, as well as metabolic potential, which can be defined as the response to an induced energy demand. Acute changes in intracellular calcium levels were also observed, indicating impaired coelomocyte activation. Lysosomes, the cell protein recycling center, and mitochondrial parameters did not change. Taken together, we were able to characterize coelomocyte metabolism to reveal a potential link to an impaired immune system upon Cd exposure.


Assuntos
Cádmio/toxicidade , Imunidade Celular/efeitos dos fármacos , Oligoquetos/metabolismo , Proteoma/análise , Poluentes do Solo/toxicidade , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/imunologia , Consumo de Oxigênio , Proteoma/efeitos dos fármacos
18.
Ecotoxicol Environ Saf ; 174: 429-434, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852307

RESUMO

Pentachloronitrobenzene (PCNB) has been widely utilized as a fungicide to control diseases. However, toxic effect data of PCNB on terrestrial invertebrate are not available till now. Herein, the earthworms (Eisenia fetida) were exposed to soil containing different levels of PCNB. Mortality, weight, accumulation, and physiological indexes of earthworms were determined on certain days. PCNB inhibited the growth of earthworms and induced a significant increase in the activity of antioxidative enzymes. ROS, SOD, and MDA of earthworms in the highest treatment group were 6.8, 4.4, and 3.8 times higher than those in the control group, respectively. In addition, earthworm coelomocytes were successfully extracted, cultured, and innovatively employed in in-vitro toxicity test to evaluate the toxic effect of PCNB. The biomarkers utilized in in-vitro toxicity test, including cell viability, intracellular ROS and extracellular LDH showed significant correlations with the PCNB in the culture media, indicating that the in-vitro toxicity test may serve as a useful tool for toxic assessment of pollutants to earthworms and other organisms.


Assuntos
Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Nitrobenzenos/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Biomarcadores/metabolismo , Fungicidas Industriais/metabolismo , Nitrobenzenos/metabolismo , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Solo/química , Poluentes do Solo/metabolismo
19.
Cell Tissue Res ; 371(3): 407-414, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29404728

RESUMO

Invertebrate immunity is associated with natural mechanisms that include cellular and humoral elements, similar to those that play a role in vertebrate innate immune responses. Formation of extracellular traps (ETs) is a newly discovered mechanism to combat pathogens, operating not only in vertebrate leucocytes but also in invertebrate immune cells. The ET components include extracellular DNA (exDNA), antimicrobial proteins and histones. Formation of mammalian ETs depends on enzymes such as neutrophil elastase, myeloperoxidase, the citrullination of histones and protease activity. It was confirmed that coelomocytes-immunocompetent cells of the earthworm Eisenia andrei-are also able to release ETs in a protease-dependent manner, dependent or independent of the formation of reactive oxygen species and rearrangement of the cell cytoskeleton. Similar to vertebrate leukocytes (e.g., neutrophil), coelomocytes are responsible for many immune functions like phagocytosis, cytotoxicity and secretion of humoral factors. ETs formed by coelomocyte analogues to neutrophil ETs consist of exDNA, histone H3 and attached to these structures proteins, e.g., heat shock proteins HSP27. The latter fact confirms that mechanisms of ET release are conserved in evolution. The study on Annelida adds this animal group to the list of invertebrates capable of ET release, but most importantly provides insides into innate mechanisms of ET formation in lower animal taxa.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Oligoquetos/citologia , Oligoquetos/metabolismo , Animais , Evolução Biológica , Sistema Imunitário/metabolismo , Oligoquetos/anatomia & histologia , Oligoquetos/imunologia
20.
Fish Shellfish Immunol ; 72: 334-341, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138098

RESUMO

The immune system of marine invertebrates, in particular that of holothurians, still requires further study. Our research showed that coelomocyte cells contained in the coelomic fluid of the sea cucumber, Holothuria tubulosa, are able to lyse, in vitro, red blood cells in rabbits and sheep. A plaque-forming assay showed spherule cells to be the effector cells, able to release cytotoxic molecules after xenogenic cell contact. The coelomocyte lysate supernatant, analysed by polyacrylamide gel electrophoresis overlay technique, using rabbit and sheep erythrocytes, showed two different haemolytic protein patterns: one calcium dependent and the other calcium independent. The fractions of each pattern were resolved on a polyacrylamide gel and calcium-dependent and independent coelomocyte lysate patterns were compared.


Assuntos
Holothuria/imunologia , Imunidade Inata , Leucócitos/imunologia , Animais , Eletroforese em Gel de Poliacrilamida , Eritrócitos , Coelhos , Ovinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa