Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 99(12): 2692-2702, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30307038

RESUMO

Understanding the interactive effects of species invasions and climate change is essential for predicting future shifts in biodiversity. Because multiple stressors can interact in synergistic or antagonistic ways, it is notoriously difficult to anticipate their combined effects on species assemblages. However, some hypotheses predict that plant invasions will become increasingly problematic as climate change improves conditions for invaders or lowers the biotic resistance of native communities. In a 4-yr field experiment, we quantified the individual and interactive effects of invasion by a globally problematic C4 grass, Imperata cylindrica, and chronic simulated drought imposed by rainout shelters on the whole plant communities of regenerating longleaf pine forest. Invasion both inhibited plant colonization and enhanced plot-level extinctions, resulting in a severe (60%) loss of plant diversity across all functional groups, including perennial grasses and forbs, annual forbs, and woody species and dramatic shifts in community composition. Experimental drought reduced diversity by 20%, and caused a shift in the dominant functional groups, but had no significant effect on cover of the invader. The invader partially ameliorated water stress in the drought treatment such that invaded plots had higher soil moisture than uninvaded plots. Consequently, the combined effects of invasion and drought were lower than expected from an additive model of multiple stressors. These findings, which may have broader implications for how other C4 grass invaders will interact with drought to shift native community dynamics, challenge the perception that climate change will exacerbate invasions. In revealing that invasive species pose a major threat to the diversity and structure of native communities despite their moderating effects on abiotic stress, this work also highlights that management of aggressive invaders may be critical to preserving biodiversity regardless of future climate.


Assuntos
Secas , Poaceae , Biodiversidade , Mudança Climática , Espécies Introduzidas
2.
Ecology ; 102(8): e03417, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043815

RESUMO

Understanding how the biological invasion is driven by environmental factors will improve model prediction and advance early detection, especially in the context of accelerating anthropogenic ecological changes. Although a large body of studies has examined how favorable environments promote biological invasions, a more comprehensive and mechanistic understanding of invasive species response to unfavorable/stressful conditions is still developing. Grass invasion has been problematic across the globe; in particular, C4 grass invaders, with high drought tolerance, adaptations to high temperatures, and high water use efficiency, could become more severe. Here, we conducted a rigorous microcosm experiment, with one of the most damaging invasive C4 grass, cogongrass (Imperata cylindrica), to explore how cogongrass responds to soil water and nutrient stress. We further integrated the results of the microcosm study with a species distribution model to (1) corroborate greenhouse results with field observations and (2) validate the robustness of our findings at subcontinental scales. Both the microcosm experiments and species distribution model agreed that soil water stress had a stronger impact on cogongrass than the nutrient one. New vegetative growth of cogongrass continued to be inhibited by the prior water stress. The significant water effect on cogongrass total biomass was supported by the finding that both allometric and biochemical traits of cogongrass did not show significant responses to the changes in water treatment. Different to the conventional wisdom that nutrient enrichment plays a bigger role in facilitating biological invasions, this study highlighted the possibility that water conditions may have a more substantial effect on some aggressive invaders. Therefore, an important implication of this study on biological conservation is that field managers might take advantage of the negative effect of global drought on some invasive species to increase the efficiency of their controlling efforts because invasive species may become more vulnerable under drought effect.


Assuntos
Espécies Introduzidas , Poaceae , Biomassa , Secas , Solo
3.
Ecology ; 100(12): e02859, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365121

RESUMO

Global change stressors such as drought and plant invasion can affect ecosystem structure and function via mediation of resource availability and plant competition outcomes. Yet, it remains uncertain how native plants respond to drought stress that co-occurs with potentially novel resource conditions created by a nonnative invader. Further, there is likely to be temporal variation in competition outcomes between native and nonnative plant species depending on which resources are most limiting at a given time. Interacting stressors coupled with temporal variation make it difficult to predict how global change will impact native plant communities. To address this knowledge gap, we conducted a 5-yr factorial field experiment to quantify how simulated drought, plant invasion (by cogongrass, Imperata cylindrica), and these stressors combined, affected resource availability (soil moisture and light) and competition dynamics between the invader and native longleaf pine (Pinus palustris), a foundation species in southeast U.S. forests. Drought and invasion mediated the survival and performance of pine seedlings in temporally dynamic and unexpected ways. Drought and invasion alone each significantly reduced pine seedling survival. However, when the stressors occurred together, the invader offset drought stress for pine seedlings by maintaining high levels of soil moisture, humidity, and shade compared to uninvaded vegetation. This facilitative effect was pronounced for 2 yr, yet shifted to strong competitive exclusion as the invasion progressed and the limiting resource switched from soil moisture to light. After 3 yr, pine tree survival was low except for pines growing with uninvaded vegetation under ambient precipitation conditions. After 5 yr, pines experiencing a single stressor were taller and had greater height to diameter ratios than pines under no stress or both stressors. This outcome revealed a filtering effect where poorly performing trees were culled under stressful conditions, especially when pines were growing with the invader. Together, these results demonstrate that although drought and invasion suppressed a foundation tree species, the invader temporarily moderated stressful drought conditions, and at least some trees were able to survive despite increasingly strong competition. Such unpredictable effects of interacting global change stressors on native plant species highlight the need for additional long-term studies.


Assuntos
Ecossistema , Pinus , Secas , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa