Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2300856120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579165

RESUMO

Space heating and cooling consume ~13% of global energy every year. The development of advanced materials that promote energy savings in heating and cooling is gaining increasing attention. To thermally isolate the space of concern and minimize the heat exchange with the outside environment has been recognized as one effective solution. To this end, here, we develop a universal category of colorful low-emissivity paints to form bilayer coatings consisting of an infrared (IR)-reflective bottom layer and an IR-transparent top layer in colors. The colorful visual appearance ensures the aesthetical effect comparable to conventional paints. High mid-infrared reflectance (up to ~80%) is achieved, which is more than 10 times as conventional paints in the same colors, efficiently reducing both heat gain and loss from/to the outside environment. The high near-IR reflectance also benefits reducing solar heat gain in hot days. The advantageous features of these paints strike a balance between energy savings and penalties for heating and cooling throughout the year, providing a comprehensive year-round energy-saving solution adaptable to a wide variety of climatic zones. Taking a typical midrise apartment building as an example, the application of our colorful low-emissivity paints can realize positive heating, ventilation, and air conditioning energy saving, up to 27.24 MJ/m2/y (corresponding to the 7.4% saving ratio). Moreover, the versatility of the paint, along with its applicability to diverse surfaces of various shapes and materials, makes the paints extensively useful in a range of scenarios, including building envelopes, transportation, and storage.

2.
Small ; 20(27): e2310359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385806

RESUMO

Electrowetting displays (EWDs) based on microfluidics are highly sought after in the fields of electronic devices, smart homes, and information communication. However, the power supply of the EWD systems for visually engaging multi-color displays remains a big challenge. Herein, self-powered colorful dynamic display systems are developed by integrating the triboelectric nanogenerator (TENG) with the EWD device. The TENG is designed with a nanotube-patterned surface and can generate open-circuit voltages ranging from 30 to 295 V by controlling the contact area. The wetting property of the micro-droplet exhibits a response to the applied voltage, enabling the triboelectricity-triggered electrowetting-on-dielectric. Driven by the voltage of 160 V, the monochromatic EWD exhibits bright color switching from magenta to transparent with a pixel aperture ratio of 78%, and the recovery process can be rapidly completed. Furthermore, the self-powered colorful dynamic EWD system can be achieved. By selectively applying the voltage to the pixels in the three monochromatic layers that constitute the colorful EWD, the wetting properties of the fluids can be controlled, allowing for colorful dynamic display. This work contributes to the advancement of color display technology for portable and wearable electronic ink displays, indoor and outdoor sports equipment, and information communication.

3.
Small ; 20(23): e2310962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149522

RESUMO

Photoreversible color switching systems (PCSSs) exhibiting multi-color responses to visible light are favored for sustainable societal development over those relying on ultraviolet light due to safer operation and better penetration depth. Here, a PCSS capable of multi-color switching responsive to visible light based on highly photoreductive rutile-phase Sn-doped TiO2-x nanoparticles is reported. The Sn-doping significantly red-shifts the absorption band of the nanoparticles to the visible region, improving charge separation and transfer efficiencies and introducing Ti3+ species and oxygen vacancies as internal sacrificial electron donors for scavenging photogenerated holes. The resulting Sn-doped TiO2-x nanoparticles feature exceptional photoreduction ability and activity, thereby enabling photoreversible color switching of various redox dyes operational under visible light illumination. Furthermore, multi-color switching can be achieved via the color overlay effect by combining different redox dyes in one system, opening the door to many advanced applications, as demonstrated in their successful uses for developing visible-light-driven rewritable multi-color light-printing systems and visual information displays.

4.
Small ; 18(25): e2202400, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587771

RESUMO

Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO2 microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m-2 at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.


Assuntos
Dióxido de Silício , Luz Solar , Temperatura Baixa , Transição de Fase , Temperatura
5.
Nanotechnology ; 32(46)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34256361

RESUMO

Colorful indoor organic photovoltaics (OPVs) have attracted considerable attention in recent years for their autonomous function in internet-of-things (IoT) devices. In this study, a solution-processed TiO2layer in a metal-oxide-metal (MOM) color filter electrode is used for light energy recycling in P3HT:ICBA-based indoor OPVs. The MOM electrode allows for tuning of the optical cavity mode to maximize photocurrent production by modulating the thickness of the TiO2layer in the sandwich structure. This approach preserves the OPVs' optoelectronic properties without damaging the photoactive layer and enables them to display a suitable range of vivid colors. The optimized MOM-OPVs demonstrated an excellent power conversion efficiency (PCE) of 8.8% ± 0.2%, which is approximately 20% higher than that of reference opaque OPVs under 1000 lx light emitting diode illumination. This can be attributed to the high photocurrent density due to the nonresonant light reflected from metals into the photoactive layer. Additionally, the proposed MOM-OPVs exhibited high external quantum efficiency and large parasitic shunt resistances, leading to improved fill factor and PCE values. Thus, the study's MOM electrode provides excellent feasibility for realizing colorful and efficient indoor OPVs for IoT applications.

6.
Folia Phoniatr Logop ; 73(3): 185-194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33341816

RESUMO

OBJECTIVES: The aims of this study were: (1) to investigate the effect of colorful semantics (CS) on the morphosyntactic and semantic development of Cypriot-Greek (CG)-speaking children with autism spectrum disorder (ASD) to obtain a better understanding of its role in an augmentative communication (AC) intervention program; (2) to address the paucity of intervention tools geared for CG-speaking children with ASD. PARTICIPANTS AND METHODS: The study included 24 boys and 16 girls with ASD, all preschool-aged 4-6 years. All were verbal but with limited production and minimal mean length of utterance. The study followed a randomized control trial design with equally sized experimental and control groups. The experimental group followed a therapeutic program using the AC with a CS protocol, while the control group's AC intervention did not include the CS protocol. RESULTS: The use of CS significantly improved the children's semantic and morphosyntactic development. CONCLUSIONS: The intervention results illustrate the effectiveness of CS in this study; however, generalizability of effectiveness to other similar CG-speaking children with ASD requires further evidence.


Assuntos
Transtorno do Espectro Autista , Semântica , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/terapia , Criança , Pré-Escolar , Feminino , Grécia , Humanos , Masculino
7.
Nano Lett ; 16(12): 7829-7835, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960502

RESUMO

Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

8.
J Soc Psychol ; 154(6): 527-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25280168

RESUMO

This study looks at "bright-side," Big Five Personality trait correlates of a "dark-side" Personality Disorder, namely Histrionic Personality Disorder (HPD). More than 5000 British adults completed the Neuroticism Extraversion Openness Personality Inventory-Revised (Costa & McCrae, 1985), which measures the Big Five Personality factors at the Domain (Super Factor) and the Facet (Factor) level, as well as the Hogan Development Survey (HDS; Hogan & Hogan, 2009), which has a measure of HPD, exclusively called "Colourful" in the HDS terminology. Correlation and regression results confirmed many of the associations between these "bright" and "dark" side individual difference variables. The Colourful (HPD) score from the HDS was the criterion variable in all analyses. Colourful individuals are high on Extraversion and Openness, but also Stable and disagreeable. The Facet analysis identified Assertiveness and Immodesty as particularly characteristic of that type. The study confirmed work on HPD using different population groups and different measures, showing that personality traits are predictable and correlated with various personality disorders.


Assuntos
Transtorno da Personalidade Histriônica/diagnóstico , Transtorno da Personalidade Histriônica/psicologia , Inventário de Personalidade/estatística & dados numéricos , Adulto , Assertividade , Extroversão Psicológica , Feminino , Humanos , Individualidade , Masculino , Pessoa de Meia-Idade , Psicometria/estatística & dados numéricos , Reprodutibilidade dos Testes , Conformidade Social , Estatística como Assunto
9.
Food Res Int ; 191: 114715, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059963

RESUMO

The positive health benefits of colored staples have led to a significant increase in interest in them as healthy food ingredients. Numerous in vitro and in vivo studies have demonstrated that colored cereals are rich in antioxidants, carotenoids, and xanthophylls, which are widely used as natural additives in the food industry. Additionally, shifts in consumer preferences have led to a preference for nutritionally balanced diets over traditional high-energy ones. Thus, colored cereals offer additional nutritional value that has been previously untapped. Besides providing essential nutrients, these natural pigments also have the potential to replace synthetic colors and food additives. This review aims to provide insights into the nutritional value of various colored staples compared to conventional starchy staples and their associated health benefits. Colored staples can be incorporated into daily diets, offering a nutritious and healthful addition to the table.


Assuntos
Antioxidantes , Grão Comestível , Valor Nutritivo , Humanos , Grão Comestível/química , Antioxidantes/análise , Carotenoides/análise , Xantofilas , Cor , Dieta Saudável
10.
MycoKeys ; 103: 37-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516363

RESUMO

The Calocybe species possess notable economic and medicinal value, demonstrating substantial potential for resource utilization. The taxonomic studies of Calocybe are lacking in quality and depth. Based on the specimens collected from northeast China, this study provides a detailed description of two newly discovered species, namely Calocybebetulicola and Calocybecystidiosa, as well as two commonly found species, Calocybedecolorata and Calocybeionides. Additionally, a previously unrecorded species, C.decolorata, has recently been discovered in Jilin Province, China. The two newly discovered species can be accurately distinguished from other species within the genus Calocybe based on their distinct morphological characteristics. The primary distinguishing features of C.betulicola include its grayish-purple pileus, grayish-brown to dark purple stipe, smaller basidiomata, absence of cellular pileipellis, and its habitat on leaf litter within birch forests. Calocybecystidiosa is distinguished by its growth on the leaf litter of coniferous forests, a flesh-pink pileus, a fibrous stipe with a white tomentose covering at the base, non-cellular pileipellis, larger basidiospores, and the presence of cheilocystidia. The reconstruction of phylogenetic trees using combined ITS, nLSU, and tef1-α sequences, employing maximum likelihood and Bayesian inference analyses, showed that C.betulicola formed a cluster with C.decurrens, while C.cystidiosa clustered with C.vinacea. However, these two clusters formed separate branches themselves, which also supported the results obtained from our morphological studies. A key to the Calocybe species reported from northeast China is provided to facilitate future studies of the genus.

11.
ACS Appl Mater Interfaces ; 16(12): 15242-15250, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485216

RESUMO

A coordination complex, Eu(C12C12dbm)3(phen), with strong emission and a high quantum yield (QY ∼ 51.9%) was synthesized. The EuIII complex, as a fluorescent emitter, was embedded in cholesteric liquid crystal polymer networks (CLCNs). A series of free-standing EuIII-CLCN films were obtained, generating a typical sharp emission band corresponding to the EuIII complex. Tunable handedness of circularly polarized luminescence (CPL) with high |glum| values (up to 0.63) was observed. A series of CPL-active CLCN-coated PET films were also prepared (|glum| values up to 0.63), which can be used for large-area preparations. Moreover, by stacking an emitter-embedded PMMA layer and a CLCN layer, a composite system was built, and a large |glum| value (∼1.42) was achieved. Fluorescence patterns were prepared, and distinct images of CLCN films were recognized under both daylight and UV light. This work not only demonstrated that coordination compounds could be incorporated with CLCN films to prepare CPL-active materials with high |glum| values but also provided a new perspective for emissive CLCN materials used for anticounterfeiting and encryption.

12.
ACS Appl Mater Interfaces ; 16(19): 25415-25421, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696539

RESUMO

It is of practical significance to develop polymer-based room-temperature phosphorescence (RTP) materials with ultralong lifetime and multicolor afterglow. Herein, the benzocarbazole derivatives were selected and combined with a poly(vinyl alcohol) (PVA) matrix by a coassembly strategy. Owing to the hydrogen-bonding interactions between benzocarbazole derivatives and the PVA matrix, the nonradiative transition and the quenching of triplet excitons are effectively inhibited. Therefore, the maximum phosphorescence emission lifetime of 2202.17 ms from ABfCz-PVA and the maximum phosphorescence quantum efficiency of 34.97% from ABtCz-PVA were obtained, respectively. In addition, commercially available dye molecules were selected to construct phosphorescent resonance energy transfer (PRET) systems for energy acceptors, enabling full-color afterglow emission in blue, green, yellow, red, and even white. Based on the characteristics of prepared RTP materials, multifunctional applications to flexibility, information encryption, and erasable drawing were deeply explored.

13.
J Hazard Mater ; 459: 132137, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499500

RESUMO

Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
14.
Discrete Comput Geom ; 69(1): 139-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36605028

RESUMO

Bárány's colorful generalization of Carathéodory's Theorem combines geometrical and combinatorial constraints. Kalai-Meshulam (2005) and Holmsen (2016) generalized Bárány's theorem by replacing color classes with matroid constraints. In this note, we obtain corresponding results in tropical convexity, generalizing the Tropical Colorful Carathéodory Theorem of Gaubert-Meunier (2010). Our proof is inspired by geometric arguments and is reminiscent of matroid intersection. Moreover, we show that the topological approach fails in this setting. We also discuss tropical colorful linear programming and show that it is NP-complete. We end with thoughts and questions on generalizations to polymatroids, anti-matroids as well as examples and matroid simplicial depth.

15.
Atten Percept Psychophys ; 85(5): 1722-1732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36754919

RESUMO

Our environment is surrounded by appetizing food stimuli that contribute to an increase in health problems such as obesity and overweight. Understanding the cognitive factors underlying the processing of food stimuli can play an important role in health interventions. Recent studies showed that high-calorie food stimuli impair working memory (WM) task performance, and some individuals, such as restrained eaters, are more susceptible to this WM performance decrement. The present study investigated the effect of low and high WM load on the processing of food stimuli in restrained and unrestrained eaters. Using an n-back task, identical food (low and high calorie) and non-food (object) stimuli were presented in colored (Experiment 1A) or in grayscale (Experiment 1B) versions. Performance was assessed by reaction time (RT), d-prime, and response bias C variables. Results revealed differences in the different WM load conditions. While no effects were observed in the low load, higher WM load impaired task performance. Processing the food stimuli, compared to objects, led to longer RTs and decreased task performance, indicated by d prime and response bias, only when the stimuli were presented in color but not in grayscale. Though no difference was observed in restrained and unrestrained eaters, the role of WM load on the visual processing of the food stimuli remains to be further examined.


Assuntos
Memória de Curto Prazo , Percepção Visual , Humanos , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Cognição , Tempo de Reação
16.
Adv Mater ; 35(22): e2300360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930466

RESUMO

Multifunction-integrated semitransparent organic photovoltaic cells (STOPVs), with high power generation, colorful transmittance/reflectance, excellent ultraviolet (UV) protection, and thermal insulation, are fully in line with the concept of architectural aesthetics and photoprotection characteristics for building-integrated photovoltaic-window. For the indelible rainbow color photovoltaic window, one crucial issue is to realize the integration of these photons- and photoelectric-related multifunction. Herein, dynamic transmissive and reflective structural color controllable filters, with asymmetrical metal-insulator-metal (MIM) configurations (20 nm-Ag-HATCN-30 nm-Ag) through machine learning, are deliberately designed for colorful STOPV devices. This endows the resultant integrated devices with ≈5% enhanced power conversion efficiency (PCE) than the bare-STOPVs, gifted UV (300-400 nm) blocking rates as high as 93.5, 94.1, 90.2, and 94.5%, as well as a superior infrared radiation (IR) (700-1400 nm) rejection approaching 100% for transparent purple-, blue-, green- and red-STOPV cells, respectively. Most importantly, benefiting from the photonic recycling effect beyond microcavity resonance wavelength, a reported quantum utilization efficiency (QUE) as high as 80%, is first presented for the transparent-green-STOPVs with an ultra-narrow bandgap of 1.2 eV. These asymmetrical Febry-Pérot transmissive and reflective structural color filters can also be extended to silicon- and perovskite-based optoelectric devices and make it possible to integrate additional target optical functions for multi-purpose optoelectric devices.

17.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144903

RESUMO

Herein, the electrorheological (ER) performances of ER fluids were correlated with their colors to allow for the visual selection of the appropriate fluid for a specific application using naked eyes. A series of TiO2-coated synthetic mica materials colored white, yellow, red, violet, blue, and green (referred to as color mica/TiO2 materials) were fabricated via a facile sol-gel method. The colors were controlled by varying the thickness of the TiO2 coating layer, as the coatings with different thicknesses exhibited different light interference effects. The synthesized color mica/TiO2 materials were mixed with silicone oil to prepare colored ER fluids. The ER performances of the fluids decreased with increasing thickness of the TiO2 layer in the order of white, yellow, red, violet, blue, and green materials. The ER performance of differently colored ER fluids was also affected by the electrical conductivity, dispersion stability, and concentrations of Na+ and Ca2+ ions. This pioneering study may provide a practical strategy for developing new ER fluid systems in future.

18.
Discrete Comput Geom ; 68(4): 964-996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466127

RESUMO

Tverberg's theorem states that for any k ≥ 2 and any set P ⊂ R d of at least ( d + 1 ) ( k - 1 ) + 1 points in d dimensions, we can partition P into k subsets whose convex hulls have a non-empty intersection. The associated search problem of finding the partition lies in the complexity class CLS = PPAD ∩ PLS , but no hardness results are known. In the colorful Tverberg theorem, the points in P have colors, and under certain conditions, P can be partitioned into colorful sets, in which each color appears exactly once and whose convex hulls intersect. To date, the complexity of the associated search problem is unresolved. Recently, Adiprasito, Bárány, and Mustafa (SODA 2019) gave a no-dimensional Tverberg theorem, in which the convex hulls may intersect in an approximate fashion. This relaxes the requirement on the cardinality of P. The argument is constructive, but does not result in a polynomial-time algorithm. We present a deterministic algorithm that finds for any n-point set P ⊂ R d and any k ∈ { 2 , ⋯ , n } in O ( n d ⌈ log k ⌉ ) time a k-partition of P such that there is a ball of radius O ( ( k / n ) diam ( P ) ) that intersects the convex hull of each set. Given that this problem is not known to be solvable exactly in polynomial time, our result provides a remarkably efficient and simple new notion of approximation. Our main contribution is to generalize Sarkaria's method (Israel Journal Math., 1992) to reduce the Tverberg problem to the colorful Carathéodory problem (in the simplified tensor product interpretation of Bárány and Onn) and to apply it algorithmically. It turns out that this not only leads to an alternative algorithmic proof of a no-dimensional Tverberg theorem, but it also generalizes to other settings such as the colorful variant of the problem.

19.
ACS Appl Mater Interfaces ; 14(49): 54676-54687, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454716

RESUMO

Daytime radiative cooling is a promising passive cooling technology for combating global warming. Existing daytime radiative coolers usually show whitish colors due to their high broadband solar reflectivity, which is not suitable for aesthetic demands and effective display. It is challenging to produce high-cooling performance materials with vivid colors because colors are often produced by the absorption of visible light, decreasing net cooling power. In this work, we design a series of colorful multilayered radiative coolers (CMRCs) consisting of an optimized selective emitter for cooling and coupled nanocavities for structural coloration, which can successfully delicately balance the trade-off between the chromaticity and cooling performance. By judiciously designing the geometric parameters and manipulating the coupling effect inside the coupled nanocavities, our coolers show sub-ambient cooling performance and a larger color gamut (occupying 17.7% sRGB area) than reported ones. We further fabricate CMRCs and demonstrate that they have temperature drops of 3.4-4.4 °C on average based on outdoor experiments. These CMRCs are promising in thermal management of electronic/optoelectronic devices and outdoor facilities.

20.
Adv Mater ; 34(25): e2104661, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34699646

RESUMO

The rapid emergence of organic-inorganic lead halide perovskites for low-cost and high-efficiency photovoltaics promises to impact new photovoltaic concepts. Their high power conversion efficiencies, ability to coat perovskite layers on glass via various scalable deposition techniques, excellent optoelectronic properties, and synthetic versatility for modulating transparency and color allow perovskite solar cells (PSCs) to be an ideal solution for building-integrated photovoltaics (BIPVs), which transforms windows or façades into electric power generators. In this review, the unique features and properties of PSCs for BIPV application are accessed. Device engineering and optical management strategies of active layers, interlayers, and electrodes for semitransparent, bifacial, and colorful PSCs are also discussed. The performance of PSCs under conditions that are relevant for BIPV such as different operational temperature, light intensity, and light incident angle are also reviewed. Recent outdoor stability testing of PSCs in different countries and other demonstration of scalability and deployment of PSCs are also spotlighted. Finally, the current challenges and future opportunities for realizing perovskite-based BIPV are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa