Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Molecules ; 29(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39407476

RESUMO

Flavonoids constitute a class of polyphenolic secondary metabolites synthesised mainly by plants and possessing anticancer, antioxidant, anti-inflammatory, and antiviral properties. Common buckwheat (F. esculentum Moench) is a dicotyledonous plant rich in different classes of flavonoids (e.g., rutin) and other phenolic compounds. Lipochitooligosaccharides (LCOs), i.e., rhizobial Nod factors and important signalling molecules for the initiation of symbiosis with legumes, are very effective mitogens that stimulate cell division in plant meristems and the production of secondary metabolites. They can also act in this way in non-legume plants. It has been shown that rhizobial Nod factors noticeably improve plant growth. Rhizobial Nod factors influence the production of flavonoids in common buckwheat grown in greenhouse conditions. The amount of rutin and isoorientin in leaves and flowers has been shown to increase in a statistically significant way after application of Nod factors to buckwheat seeds. The presence of rhizobial Nod factors has no influence on the flavonoid content in stems and roots.


Assuntos
Fagopyrum , Flavonoides , Rhizobium , Fagopyrum/metabolismo , Fagopyrum/química , Flavonoides/metabolismo , Rhizobium/metabolismo , Lipopolissacarídeos , Folhas de Planta/metabolismo , Folhas de Planta/química , Raízes de Plantas/metabolismo , Flores/metabolismo , Flores/química , Simbiose , Sementes/metabolismo , Sementes/química
2.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629032

RESUMO

Common buckwheat is a valuable plant producing seeds containing a number of health-promoting compounds and elements. Buckwheat does not contain gluten and is characterized by an excellent composition of amino acids. This species is also a melliferous plant. Despite many advantages, the area of buckwheat cultivation is decreasing due to unstable yields. One of the reasons for low seed yield is its sensitivity to drought, high temperatures, and assimilate deficiencies. These factors have a significant impact on the nectar composition, which is important for visiting pollinators and thus for pollination. High temperature during flowering increases the degeneration of embryo sacs and embryos, which is high anyway (genetic determination) in common buckwheat. This phenomenon seems to be unbreakable by breeding methods. The authors aimed to determine whether stimulants commonly used in agriculture could increase the seed yield of this plant species. The aim of the work was to choose from eight different stimulants the most effective one that would improve the seed yield of two accessions of common buckwheat by increasing the efficiency of nectar production and reducing the number of empty seeds. The plants were sprayed at either the beginning of flowering or at full bloom. The content of sugars and amino acids was higher in the nectar produced at the beginning of flowering. The nectar of both lines included also polyamines. The level of sugars in the nectar increased mainly after spraying with the stimulants in the second phase of flowering. A positive correlation between the total amount of sugars and amino acids in the nectar and seed yield was found. All the stimulants used reduced the number of empty seeds in both accessions. Seed production in the PA15 line increased significantly under the influence of all stimulants used at the beginning of flowering, and the most effective were ASAHI SL and TYTANIT®.


Assuntos
Antifibrinolíticos , Produtos Biológicos , Estimulantes do Sistema Nervoso Central , Fagopyrum , Néctar de Plantas , Melhoramento Vegetal , Sementes , Aminoácidos
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373161

RESUMO

Common buckwheat (Fagopyrum esculentum M.) is an important traditional miscellaneous grain crop. However, seed-shattering is a significant problem in common buckwheat. To investigate the genetic architecture and genetic regulation of seed-shattering in common buckwheat, we constructed a genetic linkage map using the F2 population of Gr (green-flower mutant and shattering resistance) and UD (white flower and susceptible to shattering), which included eight linkage groups with 174 loci, and detected seven QTLs of pedicel strength. RNA-seq analysis of pedicel in two parents revealed 214 differentially expressed genes DEGs that play roles in phenylpropanoid biosynthesis, vitamin B6 metabolism, and flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) was performed and screened out 19 core hub genes. Untargeted GC-MS analysis detected 138 different metabolites and conjoint analysis screened out 11 DEGs, which were significantly associated with differential metabolites. Furthermore, we identified 43 genes in the QTLs, of which six genes had high expression levels in the pedicel of common buckwheat. Finally, 21 candidate genes were screened out based on the above analysis and gene function. Our results provided additional knowledge for the identification and functions of causal candidate genes responsible for the variation in seed-shattering and would be an invaluable resource for the genetic dissection of common buckwheat resistance-shattering molecular breeding.


Assuntos
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Transcriptoma , Mapeamento Cromossômico , Sementes/metabolismo , Perfilação da Expressão Gênica
4.
Physiol Mol Biol Plants ; 29(10): 1605-1618, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076767

RESUMO

The present study investigates the biochemical responses of buckwheat to drought stress, particularly focusing on phenolic acids and flavonoids, abundant in this crop. We hypothesize that distinct genotypic responses to drought stress will lead to variations in phenolic acid accumulation. Two common buckwheat cultivars, Panda (East European origin) and PI 482597 (originating from Zimbabwe), were subjected to drought treatment, with biochemical traits, relative water content, and photosynthetic pigments regularly assessed. While chlorophyll content remained unaffected by dehydration, total carotenoid content decreased. The unique increase in the chlorophyll to carotenoid ratio suggests a specific role of carotenoids in buckwheat's metabolic stress response. While most phenolic acids and flavonoids exhibited increasing trends during progressive dehydration, their dynamics differed. Notably, rutin content increased early in drought stress, while chlorogenic acid and kaempferol showed enhanced levels only under severe dehydration. Genotypic differences were observed in chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 4-hydroxybenzoic acid, and quercetin. Conversely, trans-p-coumaric acid, trans-ferulic acid, vanillic acid, rutin, and kaempferol showed similar trends in both cultivars. By aligning observed drought-induced changes in phenolic compound contents with biosynthesis pathways, trade-offs between individual compounds were identified, contributing to the mechanistic understanding of varied stress responses.

5.
BMC Plant Biol ; 22(1): 353, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864444

RESUMO

BACKGROUND: Common buckwheat is considered a quantitative short-day plant and is classified into the autumn (highly photoperiod sensitive), summer (weakly photoperiod sensitive), and intermediate ecotype. Understanding ecotype differentiation is essential for adaptive expansion and maximizing yield. The genetic analysis for ecotype has focused on photoperiod-dependent flowering time, whereas post-flowering traits such as seed set and maturity time might also regulate ecotype differentiation. RESULTS: A field experiment revealed that ecotype differentiation is mainly defined by the timing of seed set and maturation, whereas flowering time is less relevant. Thus, we focused on maturity time as a trait that defines the ecotype. To detect QTLs for maturity time, we developed two F2 populations derived from early × late-maturing accessions and intermediate × late-maturing accessions. Using genotyping by random amplicon sequencing-direct analysis, we generated a high-density linkage map. QTL analysis detected two major QTLs for maturity time, one in each F2 population. We also detected QTLs for flowering time at loci different from maturity time QTLs, which suggests that different genetic mechanisms regulate flowering and maturity. Association analysis showed that both QTLs for maturity time were significantly associated with variations in the trait across years. CONCLUSIONS: Maturity time appeared to be more suitable for explaining ecotype differentiation than flowering time, and different genetic mechanisms would regulate the timing of flowering and maturation. The QTLs and QTL-linked markers for maturity time detected here may be useful to extend the cultivation area and to fine-tune the growth period to maximize yield in buckwheat.


Assuntos
Fagopyrum , Mapeamento Cromossômico , Ecótipo , Fagopyrum/genética , Genótipo , Locos de Características Quantitativas/genética
6.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430880

RESUMO

The identification downstream genes of floral organ identity regulators are critical to revealing the molecular mechanisms underlying floral morphogenesis. However, a general regulatory pathway between floral organ identity genes and their downstream targets is still unclear because of the lack of studies in nonmodel species. Here, we screened a direct downstream target gene, FaesELF3, of a stamen identity transcription factor, FaesAP3_1, in long-homostyle (LH) Fagopyrum esculentum moench by using yeast one-hybrid (Y1H) and dual-luciferase reporter (DR) assays. Furthermore, FaesAP3_1-silenced LH plants that produced flowers with part stamens or anthers homeotically converted into a tepaloid structure, and FaesELF3-silenced plants that had flowers with part stamens consisting of a short filament and empty anther (male sterile anther). All these suggested that transcription factor (TF) FaesAP3_1 directly activates FaesELF3 in order to regulate filament elongation and pollen grain development in LH buckwheat. Our data also suggested that other stamen development pathways independent of FaesAP3_1 remain in F. esculentum.


Assuntos
Fagopyrum , Fagopyrum/genética , Pólen/metabolismo , Flores/metabolismo , Genes de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216414

RESUMO

Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Fenóis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
8.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431874

RESUMO

Buckwheat sprouts are a source of various nutrients, e.g., antioxidant flavonoids, which have a positive effect on human health. This study analyzed the content of phenolic compounds and assessed their impact on the antioxidant and anti-inflammatory properties and dietary fiber in modified buckwheat sprouts. For this purpose, the buckwheat seeds were modified by adding Saccharomyces cerevisiae var. boulardii. The modified buckwheat sprouts showed a higher content of total phenol compounds (1526 µg/g d.w.) than the control sprouts (951 µg/g d.w.) and seeds (672 µg/g d.w.). As a consequence, a higher antioxidant activity and anti-inflammatory effect were noted. Probiotic-rich sprouts also had the highest content of total dietary fiber and its soluble fraction. A correlation between phenolic compounds and the antioxidant and anti-inflammatory effects, as well as dietary fiber, was shown. The interaction between dietary fiber and phenolic compounds affects the bioaccessibility, bioavailability, and bioactivity of phenolic compounds in food. The introduction of probiotic yeast into the sprouts had a positive effect on increasing their nutritional value, as well as their antioxidant and anti-inflammatory activity. As a consequence, the nutraceutical potential of the raw material changed, opening a new direction for the use of buckwheat sprouts, e.g., in industry.


Assuntos
Produtos Biológicos , Fagopyrum , Probióticos , Humanos , Antioxidantes/farmacologia , Saccharomyces cerevisiae , Fenóis/análise , Alérgenos , Fibras na Dieta
9.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800930

RESUMO

Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.


Assuntos
Fagopyrum/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteoma , Termotolerância/genética , Eletroforese em Gel Bidimensional , Fagopyrum/embriologia , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Resposta ao Choque Térmico/genética , Temperatura Alta , Indol-3-Glicerolfosfato Sintase/biossíntese , Indol-3-Glicerolfosfato Sintase/genética , Metionina Adenosiltransferase/biossíntese , Metionina Adenosiltransferase/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem , Regulação para Cima
10.
Breed Sci ; 70(1): 32-38, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351302

RESUMO

Common buckwheat (Fagopyrum esculentum Moench 2n = 2x = 16) is an outcrossing crop with heteromorphic self-incompatibility due to its distylous flowers, called pin and thrum. In pin plants, a long style is combined with short stamens and small pollen grains; in thrum plants, a short style is combined with long stamens and large pollen grains. Both the intra-morph self-incompatibility and flower morphology are controlled by a single genetic locus named the S locus; thrum plants are heterozygous (Ss) and pin plants are homozygous recessive (ss) at this locus. Self-incompatibility is an obstacle for establishing pure lines and fixation of agronomically useful genes. Elucidation of the molecular mechanism of heterostylous self-incompatibility of common buckwheat has continued for a quarter of a century. Recent advances in genomic and transcriptomic analyses using next-generation sequencing have made it possible to determine the genomic region harboring the buckwheat S locus and to identify novel genes at this locus. In this review, we summarize the current knowledge on buckwheat heterostyly gained from conventional and molecular genetics and genomics. We also discuss the application of these studies to breeding of common buckwheat.

11.
Breed Sci ; 70(1): 3-12, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351299

RESUMO

In this review, the current status and prospects of common buckwheat (Fagopyrum esculentum Moench.) breeding in Japan are summarized. The varieties that have been registered in Japan so far are introduced with details regarding their breeding source populations and breeding methods. Because the main breeding method used for common buckwheat is mass selection, the merits and demerits of this method are explored from the perspective of heritability. Although there are many breeding objectives in common buckwheat, high yield and yield stability are discussed here. Regarding the potential of common buckwheat breeding in the future, the prospects of effective exploitation of self-fertility and selection based on genomic information are examined.

12.
Breed Sci ; 70(1): 13-18, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351300

RESUMO

Genotyping is an essential procedure for identifying agronomically useful genes and analyzing population structure. Various types of genetic marker systems have been developed in common buckwheat (Fagopyrum esculentum Moench). In the 1980s, morphological and allozyme markers were used to construct linkage maps. Until the early 2000s, allozyme markers were widely used in population genetics studies. Such studies demonstrated that cultivated common buckwheat likely originated in the Sanjiang area of China. In the late 1990s and early 2000s, advances in PCR technology led to the development of various DNA marker systems for use in linkage mapping. However, PCR-based markers did not completely cover the genome, making genetic analysis of buckwheat challenging. The subsequent development of next generation sequencing, a game-changing technology, has allowed genome-wide analysis to be performed for many species. Indeed, 8,884 markers spanning 756 loci were recently mapped onto eight linkage groups of common buckwheat; these markers were successfully used for genomic selection to increase yield. Furthermore, draft genome sequences are now available in the Buckwheat Genome DataBase (BGDB). In this review, I summarize advances in the breeding and genetic analysis of common buckwheat based on contemporary genetic marker systems.

13.
Breed Sci ; 70(1): 101-111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351309

RESUMO

Ecotype breeding is a key technology in common buckwheat (Fagopyrum esculentum Moench) for the breeding of highly adaptive cultivars and their introduction to other cultivation areas. However, the details of the relationship between photoperiod sensitivity and ecotype remain unclear. Here, we evaluated photoperiod sensitivity in 15 landraces from different parts of Japan, and analyzed quantitative trait loci (QTLs) for photoperiod sensitivity using two F2 segregating populations derived from the crosses between self-compatible lines ('Kyukei SC2' or 'Buckwheat Norin PL1', early days-to-flowering) and allogamous plants (intermediate or late days-to-flowering). We clarified that (1) photoperiod sensitivity and differences in ecotype are closely related; (2) photoperiod sensitivity is controlled by several QTLs common among population of different ecotypes; and (3) orthologues of GIGANTEA and EARLY FLOWERING 3 will be useful markers in future detailed elucidation of the photoperiod sensitivity mechanism in common buckwheat. This study provides the basis for genomics-assisted breeding for local adaptation and ecotype breeding in common buckwheat.

14.
Breed Sci ; 70(1): 118-127, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351311

RESUMO

The zero-repeat subunit of 13S globulin, which lacks tandem repeat inserts, is trypsin-resistant and suggested to show higher allergenicity than the other subunits in common buckwheat (Fagopyrum esculentum Moench). To evaluate allelic variations and find novel alleles, the diversity of the zero-repeat genes was examined for two Japanese elite cultivars and 15 Pakistani landraces. The results demonstrated that two new alleles GlbNA1 and GlbNC1, plus three additional new alleles GlbNA2, GlbNA3, and GlbND, were identified besides the already-known GlbNA, GlbNB, and GlbNC alleles. In the Pakistani landraces, GlbNA was the most dominant allele (0.60-0.88 of allele frequency) in all except one landrace, where GlbNB was the most dominant allele (0.50 of allele frequency). Similar to GlbNC, the alleles GlbNA2 and GlbNA3 had extra ~200 bp MITE-like sequences around the stop codon. Secondary structure predictions of a sense strand demonstrated that the extra ~200 bp sequences of GlbNC, GlbNA2, and GlbNA3 can form rigid hairpin structures with free energies of -78.95, -67.06, and -29.90 kcal/mol, respectively. These structures may affect proper transcription and/or translation. In the GlbNC homozygous line, no transcript of a zero-repeat gene was detected, suggesting the material would be useful for developing hypoallergenic buckwheat.

15.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255746

RESUMO

Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.


Assuntos
Fagopyrum/genética , Flores/genética , Reprodução/genética , Sementes/genética , Fagopyrum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Polinização/genética , Estações do Ano , Sementes/crescimento & desenvolvimento
16.
Breed Sci ; 69(3): 487-497, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598082

RESUMO

Common buckwheat (Fagopyrum esculentum M.) belongs to the eudicot family Polygonaceae, Fagopyrum Mill, and its seeds have high nutritional value. The mechanism of seed development of common buckwheat remains unclear at the molecular level and no genes related to seed size have been identified. In this study, we performed genome-wide transcriptome sequencing and analysis using common buckwheat seeds at 5 days post anthesis (DPA) and 10 DPA from two cultivars (large-seeded and small-seeded). A total of 259,895 transcripts were assembled, resulting in 187,034 unigenes with average length of 1097 bp and N50 of 1538 bp. Based on gene expression profiles, 9127 differentially expressed genes (DEGs) were identified and analyzed in GO enrichment and KEGG analysis. In addition, genes related to seed size in the IKU pathway, ubiquitin-proteasome pathway, MAPK signaling pathway, TFs and phytohormones were identified and analyzed. AP2 and bZIP transcription factors, BR-signal and ABA were considered to be important regulators of seed size. This study provides a valuable genetic resource for future identification and functional analysis of candidate genes regulating seed size in common buckwheat and will be useful for improving seed yield in common buckwheat through molecular breeding in the future.

17.
Breed Sci ; 69(3): 514-520, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598086

RESUMO

To breed new highly antioxidative common buckwheat cultivars, we selected individual plants from gamma ray-irradiated populations. Selection and propagation were repeated 4 or 5 times. This recurrent selection process resulted in many individuals with enhanced antioxidative activity. Among them, 2 individuals from the forth selection and 9 individuals from the fifth selection were developed into lines with increased antioxidative activities and diverse polyphenolic composition. From these lines, 2 new cultivars 'Gamma no irodori' and 'Cobalt no chikara' were developed. Furthermore, following the selection of individuals with high rutin contents, 'Ruchiking' was developed.

18.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484314

RESUMO

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Fagopyrum/genética , Perfilação da Expressão Gênica/métodos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959807

RESUMO

Common buckwheat is a valuable crop, mainly due to the beneficial chemical composition of its seeds. However, buckwheat cultivation is limited because of unstable seed yield. The most important reasons for the low yield include embryo and flower abortion. The aim of this work is to verify whether high temperature affects embryological development in this plant species. The experiment was conducted on plants of a Polish cultivar 'Panda' and strain PA15, in which the percentage of degenerating embryo sacs was previously determined and amounted to 32% and 10%, respectively. The plants were cultivated in phytotronic conditions at 20 °C (control), and 30 °C (thermal stress). The embryological processes and hormonal profiles in flowers at various developmental stages (buds, open flowers, and wilted flowers) and in donor leaves were analyzed in two-month-old plants. Significant effects of thermal stress on the defective development of female gametophytes and hormone content in flowers and leaves were observed. Ovules were much more sensitive to high temperature than pollen grains in both genotypes. Pollen viability remained unaffected at 30 °C in both genotypes. The effect of temperature on female gametophyte development was visible in cv. Panda but not in PA15 buds. A drastic reduction in the number of properly developed embryo sacs was clear in open flowers at 30 °C in both genotypes. A considerable increase in abscisic acid in open flowers ready for fertilization may serve as a signal inducing flower senescence observed in the next few days. Based on embryological analyses and hormone profiles in flowers, we conclude that cv. 'Panda' is more sensitive to thermal stress than strain PA15, mainly due to a much earlier response to thermal stress involving impairment of embryological processes already in the flower buds.


Assuntos
Fagopyrum/embriologia , Fagopyrum/metabolismo , Flores/embriologia , Flores/metabolismo , Temperatura Alta , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/metabolismo , Óvulo Vegetal/citologia , Óvulo Vegetal/embriologia , Pólen/embriologia
20.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987158

RESUMO

Flavonoids from plants are particularly important in our diet. Buckwheat is a special crop that is rich in flavonoids. In this study, four important buckwheat varieties, including one tartary buckwheat and three common buckwheat varieties, were selected as experimental materials. The total flavonoid content of leaves from red-flowered common buckwheat was the highest, followed by tartary buckwheat leaves. A total of 182 flavonoid metabolites (including 53 flavone, 37 flavonol, 32 flavone C-glycosides, 24 flavanone, 18 anthocyanins, 7 isoflavone, 6 flavonolignan, and 5 proanthocyanidins) were identified based on Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. Through clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA), different samples were clearly separated. Considerable differences were observed in the flavonoid metabolites between tartary buckwheat leaves and common buckwheat leaves, and both displayed unique metabolites with important biological functions. This study provides new insights into the differences of flavonoid metabolites between tartary buckwheat and common buckwheat leaves and provides theoretical basis for the sufficient utilization of buckwheat.


Assuntos
Fagopyrum/química , Flavonoides/química , Metaboloma , Metabolômica , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Fagopyrum/metabolismo , Flavonoides/metabolismo , Metabolômica/métodos , Anotação de Sequência Molecular , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa