Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.222
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 177(2): 361-369.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951668

RESUMO

Long-range (>10 µm) transport of electrons along networks of Geobacter sulfurreducens protein filaments, known as microbial nanowires, has been invoked to explain a wide range of globally important redox phenomena. These nanowires were previously thought to be type IV pili composed of PilA protein. Here, we report a 3.7 Å resolution cryoelectron microscopy structure, which surprisingly reveals that, rather than PilA, G. sulfurreducens nanowires are assembled by micrometer-long polymerization of the hexaheme cytochrome OmcS, with hemes packed within ∼3.5-6 Å of each other. The inter-subunit interfaces show unique structural elements such as inter-subunit parallel-stacked hemes and axial coordination of heme by histidines from neighboring subunits. Wild-type OmcS filaments show 100-fold greater conductivity than other filaments from a ΔomcS strain, highlighting the importance of OmcS to conductivity in these nanowires. This structure explains the remarkable capacity of soil bacteria to transport electrons to remote electron acceptors for respiration and energy sharing.


Assuntos
Transporte de Elétrons/fisiologia , Geobacter/metabolismo , Heme/metabolismo , Biofilmes , Condutividade Elétrica , Elétrons , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Nanofios , Oxirredução
2.
Proc Natl Acad Sci U S A ; 121(12): e2322670121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470922

RESUMO

The bad metallic phase with resistivity above the Mott-Ioffe-Regel (MIR) limit, which appears also in cuprate superconductors, was recently understood by cold atom and computer simulations of the Hubbard model via charge susceptibility and charge diffusion constant. However, since reliable simulations can be typically done only at temperatures above the experimental temperatures, the question for cuprate superconductors is still open. This paper addresses this question by resorting to heat transport, which allows for the estimate of electronic diffusion and it further combines it with the resistivity to estimate the charge susceptibility. The doping and temperature dependencies of diffusion constant and charge susceptibilities are shown and discussed for two samples of YBa2Cu3O6+x. Results indicate strongly incoherent transport, mean free path corresponding to the MIR limit for the underdoped sample at temperatures above ~200 K and significant effect of the charge susceptibility on the resistivity.

3.
Proc Natl Acad Sci U S A ; 121(18): e2318157121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662549

RESUMO

Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.

4.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377204

RESUMO

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

5.
Proc Natl Acad Sci U S A ; 121(12): e2317300121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470924

RESUMO

Perfluoroalkyl substances (PFAS), known as "forever chemicals," are a growing concern in the sphere of human and environmental health. In response, rapid, reproducible, and inexpensive methods for PFAS detection in the environment and home water supplies are needed. We have developed a simple and inexpensive perfluoroalkyl acid detection method based on an electrically read lateral flow assay (e-LFA). Our method employs a fluorous surfactant formulation with undoped polyaniline (F-PANI) fabricated to create test lines for the lateral flow assay. In perfluoroalkyl acid sensing studies, an increase in conductivity of the F-PANI film is caused by acidification and doping of PANI. A conductivity enhancement by 104-fold can be produced by this method, and we demonstrate a limit of detection for perfluorooctanoic acid (PFOA) of 400 ppt and perfluorobutanoic acid of 200 ppt. This method for PFOA detection can be expanded for wide-scale environmental and at-home water testing.

6.
Proc Natl Acad Sci U S A ; 121(8): e2313840121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354259

RESUMO

Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications. However, a general scientific framework to guide the design of engineering materials through such elastic strain engineering (ESE) has not yet been developed. By combining first-principles calculations with ML, we present here a general approach to map out the entire phonon stability boundary in six-dimensional strain space, which can guide the ESE of a material without phase transitions. We focus on ESE of vibrational properties, including harmonic phonon dispersions, nonlinear phonon scattering, and thermal conductivity. While the framework presented here can be applied to any material, we show as an example demonstration that the room-temperature lattice thermal conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials and devices through the purposeful design of homogeneous or inhomogeneous strains.

7.
Proc Natl Acad Sci U S A ; 120(18): e2218380120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094114

RESUMO

The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm-1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.

8.
Proc Natl Acad Sci U S A ; 120(40): e2305125120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748051

RESUMO

Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.

9.
Proc Natl Acad Sci U S A ; 120(27): e2305755120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364103

RESUMO

Thermal chirality, generically referring to the handedness of heat flux, provides a significant possibility for modern heat control. It may be realized with the thermal Hall effect yet at the high cost of strong magnetic fields and extremely low temperatures. Here, we reveal magnet-free and room-temperature Hall-like heat transfer in an active thermal lattice composed of a stationary solid matrix and rotating solid particles. Rotation breaks the Onsager reciprocity relation and generates giant thermal chirality about two orders of magnitude larger than ever reported at the optimal rotation velocity. We further achieve anisotropic thermal chirality by breaking the rotation invariance of the active lattice, bringing effective thermal conductivity to a region unreachable by the thermal Hall effect. These results could enlighten topological and non-Hermitian heat transfer and efficient heat utilization in ways distinct from phonons.

10.
Plant J ; 119(2): 960-981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761363

RESUMO

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Poliamina Oxidase , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas Geneticamente Modificadas , Desenvolvimento Vegetal/genética , Poliaminas/metabolismo , Espermina/análogos & derivados
11.
Plant Physiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850036

RESUMO

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

12.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681314

RESUMO

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Assuntos
Conexina 43 , Dextranos , Animais , Cobaias , Dextranos/metabolismo , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Comunicantes/metabolismo , Albuminas/metabolismo , Manitol/farmacologia , Manitol/metabolismo , Potenciais de Ação
13.
Proc Natl Acad Sci U S A ; 119(34): e2208016119, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969770

RESUMO

Phonons are known to generate a thermal Hall effect in certain insulators, including oxides with rare-earth impurities, quantum paraelectrics, multiferroic materials, and cuprate Mott insulators. In each case, a special feature of the material is presumed relevant for the underlying mechanism that confers chirality to phonons in a magnetic field. A fundamental question is whether a phonon Hall effect is an unusual occurrence-linked to special characteristics such as skew scattering off rare-earth impurities, structural domains, ferroelectricity, or ferromagnetism-or a much more common property of insulators than hitherto believed. To help answer this question, we have turned to a material with none of the previously encountered special features: the cubic antiferromagnet Cu3TeO6. We find that its thermal Hall conductivity [Formula: see text] is among the largest of any insulator so far. We show that this record-high [Formula: see text] signal is due to phonons, and it does not require the presence of magnetic order, as it persists above the ordering temperature. We conclude that the phonon Hall effect is likely to be a fairly common property of solids.

14.
Proc Natl Acad Sci U S A ; 119(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969863

RESUMO

Light elements in Earth's core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron-electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m-1⋅K-1 for liquid Fe-9Si near the topmost outer core. If Earth's core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core-mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core-mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

15.
Proc Natl Acad Sci U S A ; 119(46): e2211151119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343252

RESUMO

Rapid developments in high-performance computing and high-power electronics are driving needs for highly thermal conductive polymers and their composites for encapsulants and interface materials. However, polymers typically have low thermal conductivities of ∼0.2 W/(m K). We studied the thermal conductivity of a series of epoxy resins cured by one diamine hardener and seven diepoxide monomers with different precise ethylene linker lengths (x = 2-8). We found pronounced odd-even effects of the ethylene linker length on the liquid crystalline order, mass density, and thermal conductivity. Epoxy resins with even x have liquid crystalline structure with the highest density of 1.44 g/cm3 and highest thermal conductivity of 1.0 W/(m K). Epoxy resins with odd x are amorphous with the lowest density of 1.10 g/cm3 and lowest thermal conductivity of 0.17 W/(m K). These findings indicate that controlling precise linker length in dense networks is a powerful route to molecular design of thermally conductive polymers.


Assuntos
Resinas Epóxi , Cristais Líquidos , Resinas Epóxi/química , Condutividade Térmica , Polímeros , Etilenos
16.
Proc Natl Acad Sci U S A ; 119(32): e2200058119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914170

RESUMO

Melanins (from the Greek µÎ­λας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown-black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can readily be extracted from the ink sac of cuttlefish. Eumelanin features broadband optical absorption, metal-binding affinity and antioxidative and radical-scavenging properties. It is a prototype of benign material for sustainable organic electronics technologies. Here, we report on an electronic conductivity as high as 10-3 S cm-1 in flexographically printed Sepia melanin films; such values for the conductivity are typical for well-established high-performance organic electronic polymers but quite uncommon for bio-sourced organic materials. Our studies show the potential of bio-sourced materials for emerging electronic technologies with low human- and eco-toxicity.


Assuntos
Eletrônica , Melaninas , Sepia , Animais , Eletrônica/instrumentação , Humanos , Tinta , Melaninas/química , Pigmentação , Sepia/química
17.
Nano Lett ; 24(23): 6889-6896, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38739156

RESUMO

Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m-1 K-1 (decreased to 49%) to 4093 W m-1 K-1 (increased to 128%), compared with the intrinsic value of 3189 W m-1 K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.

18.
Nano Lett ; 24(17): 5292-5300, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648075

RESUMO

Understanding the structure-property relationship of lithium-ion conducting solid oxide electrolytes is essential to accelerate their development and commercialization. However, the structural complexity of nonideal materials increases the difficulty of study. Here, we develop an algorithmic framework to understand the effect of microstructure on the properties by linking the microscopic morphology images to their ionic conductivities. We adopt garnet and perovskite polycrystalline oxides as examples and quantify the microscopic morphologies via extracting determined physical parameters from the images. It directly visualizes the effect of physical parameters on their corresponding ionic conductivities. As a result, we can determine the microstructural features of a Li-ion conductor with high ionic conductivity, which can guide the synthesis of highly conductive solid electrolytes. Our work provides a novel approach to understanding the microstructure-property relationship for solid-state ionic materials, showing the potential to extend to other structural/functional ceramics with various physical properties in other fields.

19.
Nano Lett ; 24(17): 5379-5386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649277

RESUMO

Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.

20.
Nano Lett ; 24(25): 7662-7671, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870422

RESUMO

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles. Consequently, the silicon anode with biomimetic binder achieves a rate capability of 1897 mAh g-1 at 8.0 A g-1 and capacity retention of 87% after 150 cycles under areal capacity upon 3.0 mAh cm-2. These results demonstrate the possibility of decoupling ionic conductivity from mechanical properties toward practical high-capacity anodes for energy-dense batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa