RESUMO
Cone-beam dental CT can provide high-precision 3D images of the teeth and surrounding bones. From the 3D CT images, 3D models, also called digital impressions, can be computed for CAD/CAM-based fabrication of dental restorations or orthodontic devices. However, the cone-beam angle-dependent artifacts, mostly caused by the incompleteness of the projection data acquired in the circular cone-beam scan geometry, can induce significant errors in the 3D models. Using a micro-CT, we acquired CT projection data of plaster cast models at several different cone-beam angles, and we investigated the dependency of the model errors on the cone-beam angle in comparison with the reference models obtained from the optical scanning of the plaster models. For the 3D CT image reconstruction, we used the conventional Feldkamp algorithm and the combined half-scan image reconstruction algorithm to investigate the dependency of the model errors on the image reconstruction algorithm. We analyzed the mean of positive deviations and the mean of negative deviations of the surface points on the CT-image-derived 3D models from the reference model, and we compared them between the two image reconstruction algorithms. It has been found that the model error increases as the cone-beam angle increases in both algorithms. However, the model errors are smaller in the combined half-scan image reconstruction when the cone-beam angle is as large as 10 degrees.
Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico , Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagens de FantasmasRESUMO
BACKGROUND: Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data. PURPOSE: Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data. Therefore, we investigated the feasibility and performance of saddle trajectory CBCT scans and compared them to circular trajectory scans. METHODS: We performed circular and saddle trajectory scans using a novel robotic CBCT scanner (Mobile ImagingRing (IRm); medPhoton, Salzburg, Austria). For the saddle trajectory, the gantry executed yaw motion up to ± 10 ∘ $\pm 10^{\circ }$ using motorized wheels driving on the floor. An infrared (IR) tracking device with reflective markers was used for online geometric calibration correction (mainly floor unevenness). All images were reconstructed using penalized least-squares minimization with the conjugate gradient algorithm from RTK with 0.5 × 0.5 × 0.5 mm 3 $0.5 \times 0.5\times 0.5 \text{ mm}^3$ voxel size. A disk phantom and an Alderson phantom were scanned to assess the image quality. Results were correlated with the local incompleteness value represented by tan ( ψ ) $\tan (\psi)$ , which was calculated at each voxel as a function of the source trajectory and the voxel's 3D coordinates. We assessed the magnitude of CB artifacts using the full width half maximum (FWHM) of each disk profile in the axial center of the reconstructed images. Spatial resolution was also quantified by the modulation transfer function at 10% (MTF10). RESULTS: When using the saddle trajectory, the region without CB artifacts was increased from 43 to 190 mm in the SI direction compared to the circular trajectory. This region coincided with low values for tan ( ψ ) $\tan (\psi)$ . When tan ( ψ ) $\tan (\psi)$ was larger than 0.02, we found there was a linear relationship between the FWHM and tan ( ψ ) $\tan (\psi)$ . For the saddle, IR tracking allowed the increase of MTF10 from 0.37 to 0.98 lp/mm. CONCLUSIONS: We achieved saddle trajectory CBCT scans with a novel CBCT system combined with IR tracking. The results show that the saddle trajectory provides a larger region with reliable reconstruction compared to the circular trajectory. The proposed method can be used to evaluate other non-circular trajectories.
Assuntos
Procedimentos Cirúrgicos Robóticos , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico Espiral/métodos , Artefatos , Reprodutibilidade dos Testes , Tomografia Computadorizada de Feixe Cônico/métodos , Algoritmos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodosRESUMO
A next generation tomosynthesis (NGT) prototype has been developed to investigate alternative scanning geometries for digital breast tomosynthesis (DBT). The NGT system uses a 2D plane as an address space for the x-ray source to define an acquisition geometry. In previous work, tests of physics have been used as objective metrics to evaluate image quality for NGT. In this work, the performance of custom NGT acquisition geometries is evaluated for mastectomy specimens to validate previous phantom experiments. Two custom acquisition geometries - incorporating T- and K-shaped source motion paths in the posteroanterior direction - were compared with a conventional DBT acquisition geometry. Noise power spectra (NPS) are calculated using 3D image reconstructions of the three acquisition geometries to evaluate the degradation of image quality due to noise and to visualize NGT sampling properties in the Fourier domain. NPS are used to describe features of the specimen image reconstructions and compare acquisition geometries. NGT acquisition geometries were found to improve high-frequency performance with isotropic super resolution, reduce out-of-plane reconstruction artifacts, and improve overall image reconstruction quality. The T-geometry combines the benefits of narrow- and wide-angle tomosynthesis in a single scan improving high-frequency spatial resolution and out-of-plane blurring, respectively.
RESUMO
PURPOSE: This work investigates the dose characteristics and image quality of a multisource cone-beam CT scanner dedicated for extremity imaging. METHODS: The scanner has an x-ray source with three separate anode-cathode units evenly distributed along the longitudinal direction. A nominal scan protocol fires the three sources sequentially, and a total of 600 projections (200 for each source) are acquired over a source-detector orbit of 210o . Dose was measured using a Farmer chamber in three CTDI phantoms stacked end-to-end. Measurements were performed at the central and four peripheral locations of a CTDI phantom on the axial plane and repeated along the longitudinal direction. The extent of 3D sampling of the three-source configuration was assessed in the Fourier domain through noise power spectrum measurements from air scans and compared with that from a single-source scan. A modified Defrise phantom and anthropomorphic knee and hand phantoms were used for visual assessment of cone-beam artifacts in the reconstructed images. RESULTS: The dose distribution for the three-source configuration exhibits radial asymmetry on the axial plane consistent with a short-scan geometry. Along the longitudinal direction, the highest dose was measured at the central axial plane where the field of view (FOV) from all three sources overlaps and falls off more slowly toward the end compared to a single-source configuration. The extent of 3D sampling is improved throughout the FOV as each source compensates for missing frequencies from the adjacent source. As a result, the reduction in streak and shading artifacts is apparent in the reconstructed images of all three phantoms. The improvement in image quality from the three-source configuration is most pronounced in joint spaces farther from the central axial plane. CONCLUSIONS: Initial assessment of the multisource scanner demonstrated the advantages over single-source designs in a compact scanner with large longitudinal FOV. The reduction in cone-beam artifact is particularly valuable for extremity imaging where high-contrast articular surfaces are present away from the central axial plane and/or throughout the FOV.