Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839864

RESUMO

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Assuntos
Núcleo Celular/metabolismo , Adesões Focais , Neoplasias Pulmonares/secundário , Melanoma/patologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Matriz Extracelular/metabolismo , Feminino , Forminas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
2.
Proc Natl Acad Sci U S A ; 121(18): e2318157121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662549

RESUMO

Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.

3.
Proc Natl Acad Sci U S A ; 121(28): e2400084121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968114

RESUMO

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

4.
Proc Natl Acad Sci U S A ; 121(41): e2407030121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39356669

RESUMO

The ability of vitrification when crossing the glass transition temperature (Tg) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's Tg remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.3 to 2.5 nm). Our approach involves subjecting confined water to annealing protocols to identify the temperature and time evolution of nonequilibrium glass kinetics. Furthermore, we complement this calorimetric approach with the dynamics of confined water, as seen by broadband dielectric spectroscopy and linear calorimetric measurements, including the fast scanning technique. This study demonstrated that confined water undergoes a glass transition in the temperature range of 170 to 200 K, depending on the confinement size and the interaction with the confinement walls. Moreover, we also show that the thermal event observed at ~136 K must be interpreted as an annealing prepeak, also referred to as the "shadow glass transition." Calorimetric measurements also allow the detection of a specific heat step above 200 K, which is insensitive to annealing and, thereby, interpreted as a true thermodynamic transition. Finally, by connecting our results to bulk water behavior, we offer a comprehensive understanding of confined water vitrification with potential implications for numerous applications.

5.
Proc Natl Acad Sci U S A ; 121(25): e2401831121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875147

RESUMO

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação às Penicilinas , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética
6.
J Cell Sci ; 137(12)2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832512

RESUMO

As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments.


Assuntos
Movimento Celular , Núcleo Celular , Núcleo Celular/metabolismo , Movimento Celular/fisiologia , Humanos , Actomiosina/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Pressão , Camundongos
7.
Proc Natl Acad Sci U S A ; 120(44): e2303473120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874860

RESUMO

Interface engineering in heterostructures at the atomic scale has been a central research focus of nanoscale and quantum material science. Despite its paramount importance, the achievement of atomically ordered heterointerfaces has been severely limited by the strong diffusive feature of interfacial atoms in heterostructures. In this work, we first report a strong dependence of interfacial diffusion on the surface polarity. Near-perfect quantum interfaces can be readily synthesized on the semipolar plane instead of the conventional c-plane of GaN/AlN heterostructures. The chemical bonding configurations on the semipolar plane can significantly suppress the cation substitution process as evidenced by first-principles calculations, which leads to an atomically sharp interface. Moreover, the surface polarity of GaN/AlN can be readily controlled by varying the strain relaxation process in core-shell nanostructures. The obtained extremely confined, interdiffusion-free ultrathin GaN quantum wells exhibit a high internal quantum efficiency of ~75%. Deep ultraviolet light-emitting diodes are fabricated utilizing a scalable and robust method and the electroluminescence emission is nearly free of the quantum-confined Stark effect, which is significant for ultrastable device operation. The presented work shows a vital path for achieving atomically ordered quantum heterostructures for III-nitrides as well as other polar materials such as III-arsenides, perovskites, etc.

8.
Am J Hum Genet ; 109(6): 1140-1152, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659929

RESUMO

In the TRIDENT-2 study, all pregnant women in the Netherlands are offered genome-wide non-invasive prenatal testing (GW-NIPT) with a choice of receiving either full screening or screening solely for common trisomies. Previous data showed that GW-NIPT can reliably detect common trisomies in the general obstetric population and that this test can also detect other chromosomal abnormalities (additional findings). However, evidence regarding the clinical impact of screening for additional findings is lacking. Therefore, we present follow-up results of the TRIDENT-2 study to determine this clinical impact based on the laboratory and perinatal outcomes of cases with additional findings. Between April 2017 and April 2019, additional findings were detected in 402/110,739 pregnancies (0.36%). For 358 cases, the origin was proven to be either fetal (n = 79; 22.1%), (assumed) confined placental mosaicism (CPM) (n = 189; 52.8%), or maternal (n = 90; 25.1%). For the remaining 44 (10.9%), the origin of the aberration could not be determined. Most fetal chromosomal aberrations were pathogenic and associated with severe clinical phenotypes (61/79; 77.2%). For CPM cases, occurrence of pre-eclampsia (8.5% [16/189] vs 0.5% [754/159,924]; RR 18.5), and birth weight <2.3rd percentile (13.6% [24/177] vs 2.5% [3,892/155,491]; RR 5.5) were significantly increased compared to the general obstetric population. Of the 90 maternal findings, 12 (13.3%) were malignancies and 32 (35.6%) (mosaic) pathogenic copy number variants, mostly associated with mild or no clinical phenotypes. Data from this large cohort study provide crucial information for deciding if and how to implement GW-NIPT in screening programs. Additionally, these data can inform the challenging interpretation, counseling, and follow-up of additional findings.


Assuntos
Diagnóstico Pré-Natal , Trissomia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Mosaicismo , Placenta , Gravidez , Diagnóstico Pré-Natal/métodos
9.
Nano Lett ; 24(2): 757-763, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166149

RESUMO

The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.

10.
Nano Lett ; 24(39): 12218-12225, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39263891

RESUMO

Neutral electrochemical nitrate (NO3-) reduction to ammonia involves sluggish and complex kinetics, so developing efficient electrocatalysts at low potential remains challenging. Here, we report a domain-confined etching strategy to construct RuxMoy nanoalloys on porous nitrogen-doped carbon by optimizing the Ru-to-Mo ratio, achieving efficient neutral NH3 electrosynthesis. Combining in situ spectroscopy and theoretical simulations demonstrated a rational synergic effect between Ru and Mo in nanoalloys that reinforces *H adsorption and lowers the energy barrier of NO3- hydrodeoxygenation for NH3 production. The resultant Ru5Mo5-NC surpasses 92.8% for NH3 selectivity at the potential range from -0.25 to -0.45 V vs RHE under neutral electrolyte, particularly achieving a high NH3 selectivity of 98.3% and a corresponding yield rate of 1.3 mg h-1 mgcat-1 at -0.4 V vs RHE. This work provides a synergic strategy that sheds light on a new avenue for developing efficient multicomponent heterogeneous catalysts.

11.
Nano Lett ; 24(3): 897-904, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193898

RESUMO

Current artificial nanochannels rely more on charge interactions for intelligent mass transport. Nevertheless, popular charged nanochannels would lose their advantages in long-term applications. Confined water, an indispensable transport medium in biological nanochannels, dominating the transport process in the uncharged nanochannels perfectly provides a new perspective. Herein, we achieve confined-water-dominated mass transport in hydrogel nanochannels (HNCs) constructed by in situ photopolymerization of acrylic acid (PAA) hydrogel in anodic alumina (AAO) nanochannels. HNCs show selectivity to Na+ transport and a high transport rate of molecules after introducing Na+/Li+, compared with other alkali metal ions like Cs+/K+. The mechanism given by ATR-FTIR shows that the hydrogen-bonding structure of confined water in HNCs is destabilized by Na+/Li+, which facilitates mass transport, but is constrained by Cs+/K+, resulting in transport inhibition. This work elucidates the relationship between confined water and mass transport in uncharged nanochannels while also presenting a strategy for designing functional nanochannel devices.

12.
Nano Lett ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373237

RESUMO

Rhombohedral polytype transition metal dichalcogenide (TMDC) multilayers exhibit non-centrosymmetric interlayer stacking, which yields intriguing properties such as ferroelectricity, a large second-order susceptibility coefficient χ(2), giant valley coherence, and a bulk photovoltaic effect. These properties have spurred significant interest in developing phase-selective growth methods for multilayer rhombohedral TMDC films. Here, we report a confined-space, hybrid metal-organic chemical vapor deposition method that preferentially grows 3R-WS2 multilayer films with thickness up to 130 nm. We confirm the 3R stacking structure via polarization-resolved second-harmonic generation characterization and the 3-fold symmetry revealed by anisotropic H2O2 etching. The multilayer 3R WS2 shows a dendritic morphology, which is indicative of diffusion-limited growth. Multilayer regions with large, stepped terraces enable layer-resolved evaluation of the optical properties of 3R-WS2 via Raman, photoluminescence, and differential reflectance spectroscopy. These measurements confirm the interfacial quality and suggest ferroelectric modification of the exciton energies.

13.
Nano Lett ; 24(32): 9832-9838, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101565

RESUMO

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.

14.
Nano Lett ; 24(15): 4571-4579, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565076

RESUMO

Efficient pure-red emission light-emitting diodes (LEDs) are essential for high-definition displays, yet achieving pure-red emission is hindered by challenges like phase segregation and spectral instability when using halide mixing. Additionally, strongly confined quantum dots (QDs) produced through traditional hot-injection methods face byproduct contamination due to poor solubility of metal halide salts in the solvent octadecene (ODE) at low temperatures. Herein, we introduced a novel method using a benzene-series strongly electrostatic potential solvent instead of ODE to prevent PbI2 intermediates and promote their dissolution into [PbI3]-. Increasing methyl groups on benzene yields precisely sized (4.4 ± 0.1 nm) CsPbI3 QDs with exceptional properties: a narrow 630 nm PL peak with photoluminescence quantum yield (PLQY) of 97%. Sequential ligand post-treatment optimizes optical and electrical performance of QDs. PeLEDs based on optimized QDs achieve pure-red EL (CIE: 0.700, 0.290) approaching Rec. 2020 standards, with an EQE of 25.2% and T50 of 120 min at initial luminance of 107 cd/m2.

15.
Small ; 20(42): e2311909, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031680

RESUMO

Polymer nanocapsules with hydrophobic cores are promising candidates for nanoreactors to carry out (bio)chemical reactions mimicking the performance of natural cellular systems. Their architecture allows reagents to be encapsulated in the cores enabling reactions to proceed in confined environments in a controlled, and efficient manner. Polysaccharide-shell oil-core nanocapsules are proposed here as facile mergeable nanoreactors. Spontaneous fusion of oppositely charged polysaccharide capsules is demonstrated for the first time. Such capsules are formed and easily loaded with reagents by nanoemulsification of an aqueous solution of hydrophobically modified polysaccharides (chitosan, hyaluronate) and oleic acid with dissolved desired hydrophobic compounds. Efficient fusion of the formed nanocapsules dispersed in an aqueous medium at optimized conditions (pH, ionic strength) is followed using fluorescence microscopy by labeling both their cores and shells with fluorescent dyes. As a proof of concept, a model fluorogenic synthesis is also realized by fusing the capsules containing separated reagents and the catalyst. The nanocapsules and fusion process developed here establish a platform for realization of versatile reactions in a confined environment including model studies on biologically relevant processes taking place in natural systems.

16.
Small ; 20(1): e2302440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668280

RESUMO

The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.


Assuntos
Biomimética , Percepção do Tato , Humanos , Temperatura , Tato/fisiologia , Canais Iônicos
17.
Small ; 20(5): e2305316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37661568

RESUMO

Hierarchically porous carbons with tailor-made properties are essential for applications wherein rich active sites and fast mass transfer are required. Herein, a rapid aerosol-confined salt/surfactant templating approach is proposed for synthesizing hierarchically porous carbon microspheres (HPCMs) with a maze-like structure and large mesopore tunnels for high-performance tri-phase catalytic ozonation. The confined assembly in drying microdroplets is crucial for coherent salt (NaCl) and surfactant (F127) dual templating without macroscopic phase separation. The HPCMs possess tunable sizes, a maze-like structure with highly open macropores (0.3-30 µm) templated from NaCl crystal arrays, large intrawall mesopore tunnels (10-45 nm) templated from F127, and rich micropores (surface area >1000 m2 g-1 ) and oxygen heteroatoms originated from NaCl-confined carbonization of phenolic resin. The structure formation mechanism of the HPCMs and several influencing factors on properties are elaborated. The HPCMs exhibit superior performance in gas-liquid-solid tri-phase catalytic ozonation for oxalate degradation, owing to their hierarchical pore structure for fast mass transfer and rich defects and oxygen-containing groups (especially carbonyl) for efficient O3 activation. The reactive oxygen species responsible for oxalate degradation and the influences of several structure parameters on performance are discussed. This work may provide a platform for producing hierarchically porous materials for various applications.

18.
Small ; : e2402759, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301993

RESUMO

The advent of organic-inorganic hybrid metal halide perovskites has revolutionized photovoltaics, with polycrystalline thin films reaching over 26% efficiency and single-crystal perovskite solar cells (IC-PSCs) demonstrating ≈24%. However, research on single-crystal perovskites remains limited, leaving a crucial gap in optimizing solar energy conversion. Unlike polycrystalline films, which suffer from high defect densities and instability, single-crystal perovskites offer minimal defects, extended carrier lifetimes, and longer diffusion lengths, making them ideal for high-performance optoelectronics and essential for understanding perovskite material behavior. This review explores the advancements and potential of IC-PSCs, focusing on their superior efficiency, stability, and role in overcoming the limitations of polycrystalline counterparts. It covers device architecture, material composition, preparation methodologies, and recent breakthroughs, emphasizing the importance of further research to propel IC-PSCs toward commercial viability and future dominance in photovoltaic technology.

19.
Small ; 20(31): e2309391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38456381

RESUMO

As p-type phase-change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two-dimensional (2D) p-type GeTe nanosheets are synthesized via a specially designed space-confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space-confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p-type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature-dependent electrical measurements demonstrate that variable-range hopping and optical-phonon-assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W-1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near-infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p-type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.

20.
Small ; 20(28): e2309128, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308414

RESUMO

The osmotic energy conversion properties of biomimetic light-stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light-induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano-confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m-2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m-2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high-performance energy conversion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa