Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.171
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917015

RESUMO

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Animais , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos
2.
Proc Natl Acad Sci U S A ; 120(31): e2217795120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487076

RESUMO

The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.


Assuntos
Córnea , Epitélio Corneano , Animais , Humanos , Camundongos , Vias Aferentes , Inflamação , Microscopia Intravital
3.
Immunol Rev ; 306(1): 293-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837251

RESUMO

Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.


Assuntos
Imunidade Inata , Neutrófilos , Animais , Humanos , Microscopia Intravital/métodos , Macrófagos , Mamíferos , Monócitos
4.
J Biol Chem ; 300(10): 107693, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159821

RESUMO

Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.

5.
Plant J ; 118(3): 856-878, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38261531

RESUMO

Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.


Assuntos
Complexo de Golgi , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complexo de Golgi/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Retículo Endoplasmático/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Xilanos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 117(2): 332-341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985241

RESUMO

Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models. A remaining obstacle has been the limited in situ volume information of plastids and other cell organelles. To fill this gap for chloroplasts, we established three microscopy protocols delivering in situ volumes based on: (i) chlorophyll fluorescence emerging from the thylakoid membrane, (ii) a CFP marker embedded in the envelope, and (iii) calculations from serial block-face scanning electron microscopy (SBFSEM). The obtained data were corroborated by comparing wild-type data with two mutant lines affected in the plastid division machinery known to produce small and large mesophyll chloroplasts, respectively. Furthermore, we also determined the volume of the much smaller guard cell plastids. Interestingly, their volume is not governed by the same components of the division machinery which defines mesophyll plastid size. Based on our three approaches, the average volume of a mature Col-0 wild-type mesophyll chloroplasts is 93 µm3 . Wild-type guard cell plastids are approximately 18 µm3 . Lastly, our comparative analysis shows that the chlorophyll fluorescence analysis can accurately determine chloroplast volumes, providing an important tool to research groups without access to transgenic marker lines expressing genetically encoded fluorescence proteins or costly SBFSEM equipment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microscopia Eletrônica de Varredura , Plastídeos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Microscopia Confocal
7.
Plant J ; 118(5): 1689-1698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38310596

RESUMO

Confocal microscopy has greatly aided our understanding of the major cellular processes and trafficking pathways responsible for plant growth and development. However, a drawback of these studies is that they often rely on the manual analysis of a vast number of images, which is time-consuming, error-prone, and subject to bias. To overcome these limitations, we developed Dot Scanner, a Python program for analyzing the densities, lifetimes, and displacements of fluorescently tagged particles in an unbiased, automated, and efficient manner. Dot Scanner was validated by performing side-by-side analysis in Fiji-ImageJ of particles involved in cellulose biosynthesis. We found that the particle densities and lifetimes were comparable in both Dot Scanner and Fiji-ImageJ, verifying the accuracy of Dot Scanner. Dot Scanner largely outperforms Fiji-ImageJ, since it suffers far less selection bias when calculating particle lifetimes and is much more efficient at distinguishing between weak signals and background signal caused by bleaching. Not only does Dot Scanner obtain much more robust results, but it is a highly efficient program, since it automates much of the analyses, shortening workflow durations from weeks to minutes. This free and accessible program will be a highly advantageous tool for analyzing live-cell imaging in plants.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Confocal , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Células Vegetais
8.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35072204

RESUMO

Understanding how development is coordinated in multiple tissues and gives rise to fully functional organs or whole organisms necessitates microscopy tools. Over the last decade numerous advances have been made in live-imaging, enabling high resolution imaging of whole organisms at cellular resolution. Yet, these advances mainly rely on mounting the specimen in agarose or aqueous solutions, precluding imaging of organisms whose oxygen uptake depends on ventilation. Here, we implemented a multi-view multi-scale microscopy strategy based on confocal spinning disk microscopy, called Multi-View confocal microScopy (MuViScopy). MuViScopy enables live-imaging of multiple organs with cellular resolution using sample rotation and confocal imaging without the need of sample embedding. We illustrate the capacity of MuViScopy by live-imaging Drosophila melanogaster pupal development throughout metamorphosis, highlighting how internal organs are formed and multiple organ development is coordinated. We foresee that MuViScopy will open the path to better understand developmental processes at the whole organism scale in living systems that require gas exchange by ventilation.


Assuntos
Drosophila melanogaster/anatomia & histologia , Microscopia Confocal/métodos , Animais , Metamorfose Biológica , Pupa/anatomia & histologia , Imagem com Lapso de Tempo
9.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34604909

RESUMO

The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.


Assuntos
Feto , Citometria de Fluxo , Pele , Linfócitos T , Adulto , Feminino , Feto/citologia , Feto/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/citologia , Pele/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
10.
Methods ; 230: 44-58, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074540

RESUMO

The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.


Assuntos
Citoesqueleto de Actina , Actinas , Microscopia Confocal , Actinas/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Microscopia Confocal/métodos , Animais , Transdução de Sinais , Software , Processamento de Imagem Assistida por Computador/métodos , Citoesqueleto/metabolismo
11.
Nano Lett ; 24(9): 2735-2742, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277644

RESUMO

Recent advances in two-photon polymerization fabrication processes are paving the way to creating macroscopic metamaterials with microscale architectures, which exhibit mechanical properties superior to their bulk material counterparts. These metamaterials typically feature lightweight, complex patterns such as lattice or minimal surface structures. Conventional tools for investigating these microscale structures, such as scanning electron microscopy, cannot easily probe the internal features of these structures, which are critical for a comprehensive assessment of their mechanical behavior. In turn, we demonstrate an optical confocal microscopy-based approach that allows for high-resolution optical imaging of internal deformations and fracture processes in microscale metamaterials under mechanical load. We validate this technique by investigating an exemplary metamaterial lattice structure of 80 × 80 × 80 µm3 in size. This technique can be extended to other metamaterial systems and holds significant promise to enhance our understanding of their real-world performance under loading conditions.

12.
Nano Lett ; 24(39): 12125-12132, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39298669

RESUMO

Super-resolution (SR) microscopy provides a revolutionary optical imaging approach by breaking the diffraction limit of light, while the commonly required special instrumentation with complex optical setup hampers its popularity. Here, we present a scanning switch-off microscopy (SSM) concept that exploits the omnipresent switch-off response of fluorophores to enable super-resolution imaging using a commercial confocal microscope. We validated the SSM model with theoretical calculations and experiments. An imaging resolution of ∼100 nm was obtained for DNA origami nanostructures and cellular cytoskeletons using fluorescent labels of Alexa 405, Alexa 488, Cy3, and Atto 488. Notably, super-resolution imaging of live cells was realized with SSM, by employing a dronpa fluorescent protein as the fluorescent label. In principle, this SSM method can be applied to any excitation laser scanning-based microscope.


Assuntos
Corantes Fluorescentes , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Microscopia Confocal/métodos , Humanos , DNA/química , Imagem Óptica/métodos , Nanoestruturas/química
13.
Dev Dyn ; 253(7): 690-704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38131490

RESUMO

BACKGROUND: Spatial mapping on the single-cell level over the whole organism can uncover roles of molecular players involved in vertebrate development. Custom microscopes have been developed that use multiple objectives to view a sample from multiple views at the same time. Such multiview imaging approaches can improve resolution and uniformity of image quality as well as allow whole embryos to be imaged (Swoger et al., Opt Express, 2007;15(13):8029). However, multiview imaging is highly restricted to specialized equipment requiring multiple objectives or sample rotation with automated hardware. RESULTS: Our approach uses a standard single-objective confocal microscope to perform serial multiview imaging. Multiple views are imaged sequentially by mounting the fixed sample in an agarose tetrahedron that is manually rotated in between imaging each face. Computational image fusion allows for a joint 3D image to be created from multiple tiled Z-stacks acquired from different angles. The resulting fused image has improved resolution and imaging extent. CONCLUSION: With this technique, multiview imaging can be performed on a variety of common single-objective microscopes to allow for whole-embryo, high-resolution imaging.


Assuntos
Embrião não Mamífero , Microscopia Confocal , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
Traffic ; 23(3): 174-187, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075729

RESUMO

The endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the ER and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Citoesqueleto de Actina/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia
15.
J Neurosci ; 43(9): 1509-1529, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669885

RESUMO

Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine.SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.


Assuntos
Astrócitos , Neuroglia , Camundongos , Masculino , Feminino , Animais , Astrócitos/metabolismo , Córtex Cerebral
16.
J Biol Chem ; 299(12): 105380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866629

RESUMO

Mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in Saccharomyces cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 (KD = 12-68 µM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss-of-function and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A), demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae. These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Proteínas Mitocondriais , Humanos , Alanina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Plant J ; 115(3): 602-613, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37326283

RESUMO

Mitosis and cytokinesis are fundamental processes through which somatic cells increase their numbers and allow plant growth and development. Here, we analyzed the organization and dynamics of mitotic chromosomes, nucleoli, and microtubules in living cells of barley root primary meristems using a series of newly developed stable fluorescent protein translational fusion lines and time-lapse confocal microscopy. The median duration of mitosis from prophase until the end of telophase was 65.2 and 78.2 min until the end of cytokinesis. We showed that barley chromosomes frequently start condensation before mitotic pre-prophase as defined by the organization of microtubules and maintain it even after entering into the new interphase. Furthermore, we found that the process of chromosome condensation does not finish at metaphase, but gradually continues until the end of mitosis. In summary, our study features resources for in vivo analysis of barley nuclei and chromosomes and their dynamics during mitotic cell cycle.


Assuntos
Hordeum , Hordeum/genética , Mitose , Cromossomos , Microtúbulos , Núcleo Celular , Prófase
18.
Glia ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077799

RESUMO

Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the brain; this process fails during demyelinating pathologies. Adenosine is emerging as an important player in oligodendrogliogenesis, by activating its metabotropic receptors (A1R, A2AR, A2BR, and A3R). We previously demonstrated that the Gs-coupled A2BR reduced differentiation of primary OPC cultures by inhibiting delayed rectifier (IK) as well as transient (IA) outward K+ currents. To deepen the unclear role of this receptor subtype in neuron-OL interplay and in myelination process, we tested the effects of different A2BR ligands in a dorsal root ganglion neuron (DRGN)/OPC cocultures, a corroborated in vitro myelination assay. The A2BR agonist, BAY60-6583, significantly reduced myelin basic protein levels but simultaneously increased myelination index in DRGN/OPC cocultures analyzed by confocal microscopy. The last effect was prevented by the selective A2BR antagonists, PSB-603 and MRS1706. To clarify this unexpected data, we wondered whether A2BRs could play a functional role on DRGNs. We first demonstrated, by immunocytochemistry, that primary DRGN monoculture expressed A2BRs. Their selective activation by BAY60-6583 enhanced DRGN excitability, as demonstrated by increased action potential firing, decreased rheobase and depolarized resting membrane potential and were prevented by PSB-603. Throughout this A2BR-dependent enhancement of neuronal activity, DRGNs could release factors to facilitate myelination processes. Finally, silencing A2BR in DRGNs alone prevents the increased myelination induced by BAY60-6583 in cocultures. In conclusion, our data suggest a different role of A2BR during oligodendrogliogenesis and myelination, depending on their activation on neurons or oligodendroglial cells.

19.
Antimicrob Agents Chemother ; 68(3): e0134023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38364015

RESUMO

We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Nafcilina , beta-Lactamas/metabolismo , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Oxacilina/farmacologia , Oxacilina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
20.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929456

RESUMO

Chromosomal instability (CIN), the process of increased chromosomal alterations, compromises genomic integrity and has profound consequences on human health. Yet, our understanding of the molecular and mechanistic basis of CIN initiation remains limited. We developed a high-throughput, single-cell, image-based pipeline employing deep-learning and spot-counting models to detect CIN by automatically counting chromosomes and micronuclei. To identify CIN-initiating conditions, we used CRISPR activation in human diploid cells to upregulate, at physiologically relevant levels, 14 genes that are functionally important in cancer. We found that upregulation of CCND1, FOXA1 and NEK2 resulted in pronounced changes in chromosome counts, and KIF11 upregulation resulted in micronuclei formation. We identified KIF11-dependent fragilities within the mitotic spindle; increased levels of KIF11 caused centrosome fragmentation, higher microtubule stability, lagging chromosomes or mitotic catastrophe. Our findings demonstrate that even modest changes in the average expression of single genes in a karyotypically stable background are sufficient for initiating CIN by exposing fragilities of the mitotic spindle, which can lead to a genomically diverse cell population.


Assuntos
Instabilidade Cromossômica , Cinesinas , Fuso Acromático , Aneuploidia , Centrossomo/metabolismo , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Humanos , Cinesinas/genética , Microtúbulos/genética , Mitose/genética , Quinases Relacionadas a NIMA/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa