Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113427

RESUMO

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Assuntos
Desenho de Fármacos , Integrina alfa4beta1 , Conformação Proteica , Serina , Água
2.
Mol Cell ; 82(24): 4647-4663.e8, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525955

RESUMO

To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.


Assuntos
Infecções por HIV , Microglia , Humanos , Microglia/metabolismo , Encéfalo , Ativação de Macrófagos , Macrófagos , Infecções por HIV/genética
3.
Mol Cell ; 82(21): 4131-4144.e6, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36272408

RESUMO

RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and selectively distinguishes them from closely related RNAs abundant in host cells. The physical basis for this exquisite selectivity is revealed through a series of high-resolution cryo-EM structures of RIG-I in complex with host and viral RNA ligands. These studies demonstrate that RIG-I actively samples double-stranded RNAs in the cytoplasm and distinguishes them by adopting two different types of protein folds. Upon binding viral RNA, RIG-I adopts a high-affinity conformation that is conducive to signaling, while host RNA induces an autoinhibited conformation that stimulates RNA release. By coupling protein folding with RNA binding selectivity, RIG-I distinguishes RNA molecules that differ by as little as one phosphate group, thereby explaining the molecular basis for selective antiviral sensing and the induction of autoimmunity upon RIG-I dysregulation.


Assuntos
RNA Helicases DEAD-box , RNA Viral , RNA Viral/metabolismo , Ligantes , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteína DEAD-box 58/metabolismo , RNA de Cadeia Dupla , Proteínas de Transporte/metabolismo
4.
RNA ; 29(12): 1896-1909, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793790

RESUMO

The characterization of the conformational landscape of the RNA backbone is rather complex due to the ability of RNA to assume a large variety of conformations. These backbone conformations can be depicted by pseudotorsional angles linking RNA backbone atoms, from which Ramachandran-like plots can be built. We explore here different definitions of these pseudotorsional angles, finding that the most accurate ones are the traditional η (eta) and θ (theta) angles, which represent the relative position of RNA backbone atoms P and C4'. We explore the distribution of η - θ in known experimental structures, comparing the pseudotorsional space generated with structures determined exclusively by one experimental technique. We found that the complete picture only appears when combining data from different sources. The maps provide a quite comprehensive representation of the RNA accessible space, which can be used in RNA-structural predictions. Finally, our results highlight that protein interactions lead to significant changes in the population of the η - θ space, pointing toward the role of induced-fit mechanisms in protein-RNA recognition.


Assuntos
Proteínas , RNA , RNA/genética , RNA/química , Proteínas/química , Conformação de Ácido Nucleico
5.
Mol Syst Biol ; 20(3): 162-169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291232

RESUMO

Proteins are the key molecular machines that orchestrate all biological processes of the cell. Most proteins fold into three-dimensional shapes that are critical for their function. Studying the 3D shape of proteins can inform us of the mechanisms that underlie biological processes in living cells and can have practical applications in the study of disease mutations or the discovery of novel drug treatments. Here, we review the progress made in sequence-based prediction of protein structures with a focus on applications that go beyond the prediction of single monomer structures. This includes the application of deep learning methods for the prediction of structures of protein complexes, different conformations, the evolution of protein structures and the application of these methods to protein design. These developments create new opportunities for research that will have impact across many areas of biomedical research.


Assuntos
Aprendizado Profundo , Proteínas/metabolismo , Conformação Proteica
6.
Proteomics ; 24(3-4): e2300135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37312401

RESUMO

Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.


Assuntos
Eletroforese Capilar , Proteínas , Espectrometria de Massas/métodos , Proteínas/análise , Eletroforese Capilar/métodos
7.
J Biol Chem ; 299(7): 104881, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269948

RESUMO

Prion protein (PrP) misfolding is the key trigger in the devastating prion diseases. Yet the sequence and structural determinants of PrP conformation and toxicity are not known in detail. Here, we describe the impact of replacing Y225 in human PrP with A225 from rabbit PrP, an animal highly resistant to prion diseases. We first examined human PrP-Y225A by molecular dynamics simulations. We next introduced human PrP in Drosophila and compared the toxicity of human PrP-WT and Y225A in the eye and in brain neurons. Y225A stabilizes the ß2-α2 loop into a 310-helix from six different conformations identified in WT and lowers hydrophobic exposure. Transgenic flies expressing PrP-Y225A exhibit less toxicity in the eye and in brain neurons and less accumulation of insoluble PrP. Overall, we determined that Y225A lowers toxicity in Drosophila assays by promoting a structured loop conformation that increases the stability of the globular domain. These findings are significant because they shed light on the key role of distal α-helix 3 on the dynamics of the loop and the entire globular domain.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Animais , Humanos , Coelhos , Animais Geneticamente Modificados , Drosophila , Doenças Priônicas/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Estabilidade Proteica , Conformação Proteica em alfa-Hélice
8.
Biochem Biophys Res Commun ; 703: 149601, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364680

RESUMO

Thaumatin is a sweet-tasting protein that elicits a sweet taste at a threshold of approximately 50 nM. Structure-sweetness relationships in thaumatin suggest that the basicity of two amino acids residues, Arg82 and Lys67, are particularly responsible for sweetness. Using tetragonal crystals, our structural analysis suggested that flexible sidechain conformations of these two residues play an important role in sweetness. However, in tetragonal crystals, Arg82 is adjacent to symmetry-related residues, and its flexibility is relatively restrained by the crystal packing. To reduce and diminish these symmetry-related effects, orthorhombic crystals were prepared, and their structures were successfully determined at a resolution of 0.89 Å. Within the orthorhombic lattice, two alternative conformations were more clearly visible at Lys67 than in a tetragonal system. Interestingly, for the first time, three alternative conformations at Arg82 were only found in an orthorhombic system. These results suggest the importance of flexible conformations in sweetness determinants. Such subtle structural variations might serve to adjust the complementarity of the electrostatic potentials of sweet receptors, thereby eliciting the potent sweet taste of thaumatin.


Assuntos
Aditivos Alimentares , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Conformação Proteica , Edulcorantes , Paladar
9.
Small ; 20(25): e2307995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212277

RESUMO

A simple, reliable method for identifying ß-lactoglobulin (ß-LG) in dairy products is needed to protect those with ß-LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label-free modular ß-LG aptasensor consisting of an aptamer-loop G-quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module-fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine-tuning the sequences. Furthermore, the principle of specific ß-LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by ß-LG to reinforce the G4 topology and fluorescence. Finally, a label-free, assembly-free, succinct, and turn-on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting ß-LG within 22-min. This study provides a generalizable approach for the conformational regulation of module-fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Lactoglobulinas , Lactoglobulinas/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
10.
J Virol ; 97(9): e0071023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681958

RESUMO

The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.


Assuntos
Anticorpos Amplamente Neutralizantes , Epitopos de Linfócito B , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Interações entre Hospedeiro e Microrganismos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , HIV-1/metabolismo , Lectinas/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vírion/química , Vírion/imunologia , Vírion/metabolismo , Polissacarídeos/metabolismo
11.
Chemistry ; : e202402635, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194284

RESUMO

For advanced synthetic intermediates or natural products with multiple unactivated and energetically similar C(sp3)-H bonds, controlling regioselectivity for the C-H activation is particularly challenging. The use of cytochrome P450 enzymes (CYPs) is a promising solution to the 'regioelectivity' challenge in remote C-H activation. Notably, CYPs and organic catalysts share a fundamental principle: they strive to control the distance and geometry between the metal reaction center and the target C-H site. Most structural analyses of the regioselectivity of CYPs are limited to the active pocket, particularly when explaining why regioselectivity could be altered by enzyme engineering through mutagenesis. However, the substructures responsible for forming the active pocket in CYPs are well known to display complex dynamic changes and substrate-induced plasticity. In this context, we highlight a comparative study of the recently reported paralogous CYPs, IkaD and CftA, which achieve different regioselectivity towards the same substrate ikarugamycin by distinct substructure conformations. We propose that substructural conformation-controlled regioselectivity might also be present in CYPs of other natural product biosynthesis pathways, which should be considered when engineering CYPs for regioselective modifications.

12.
Arch Biochem Biophys ; 760: 110129, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39159898

RESUMO

Polysaccharide polymers are increasingly being used as chaperon-like macromolecules in assisting protein folding of unfolded protein molecules. They interact with unfolded or partially folded proteins in a charge and conformation specific manner that results in the formation of stable protein-polysaccharide complexes. In most of the cases, the complex formation of protein-polysaccharide is driven via non-covalent interactions that have found to endorse the activity of proteins. T4L (18.7 kDa) and T7L (17 kDa) endolysins belong to the hydrolase and amidase class of peptidoglycan degrading enzymes. Both T4L and T7L exist in partially folded forms and are devoid of lytic activity at low pH conditions. In the current study, we assessed the binding of alginate with T4L and T7L at pH 7 and 3 using variety of biophysical and biochemical techniques. Spectroscopic studies revealed differential structural modulations of partially folded T4L and T7L upon their interaction with alginate. Further, the complex formation of alginate with partially folded T4L/T7L was confirmed by ITC and STEM. Additionally, the formed complexes of alginate with both T4L/T7L PF endolysins were found to be chemically and enzymatically stable. Moreover, such complexes were also marked with differential enhancement in their lytic activities at acidic pH conditions. This implied the potency of alginate as an excellent choice of matrix to preserve the structural and functional integrity of partially folded forms of T4L and T7L at highly acidic conditions.


Assuntos
Alginatos , Endopeptidases , Dobramento de Proteína , Alginatos/química , Alginatos/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Ácido Glucurônico/química , Bacteriófago T4/enzimologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Conformação Proteica
13.
Mol Pharm ; 21(2): 770-780, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181202

RESUMO

The R3m molecular descriptor (R-GETAWAY third-order autocorrelation index weighted by the atomic mass) has previously been shown to encode molecular attributes that appear to be physically and chemically relevant to grouping diverse active pharmaceutical ingredients (API) according to their potential to form persistent amorphous solid dispersions (ASDs) with polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA). The initial R3m dispersibility model was built by using a single three-dimensional (3D) conformation for each drug molecule. Since molecules in the amorphous state will adopt a distribution of conformations, molecular dynamics simulations were performed to sample conformations that are probable in the amorphous form, which resulted in a distribution of R3m values for each API. Although different conformations displayed R3m values that differed by as much as 0.4, the median of each R3m distribution and the value predicted from the single 3D conformation were very similar for most structures studied. The variability in R3m resulting from the distribution of conformations was incorporated into a logistic regression model for the prediction of ASD formation in PVPVA, which resulted in a refinement of the classification boundary relative to the model that only incorporated a single conformation of each API.


Assuntos
Polímeros , Povidona , Polímeros/química , Povidona/química , Compostos de Vinila/química , Liberação Controlada de Fármacos , Solubilidade , Composição de Medicamentos/métodos
14.
Macromol Rapid Commun ; 45(10): e2400025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323367

RESUMO

Large scale computer simulations are employed to analyze the conformations of network strands in polymer networks at preparation conditions (characterized by a polymer volume fraction of ϕ0) and when swollen to equilibrium (characterized by a polymer volume fraction ϕ < ϕ0). Network strands in end-linked model networks are weakly stretched and partially swollen at preparation conditions as compared to linear polymers in the same solvent at ϕ0. Equilibrium swelling causes non-ideal chain conformations characterized by an effective scaling exponent approaching 7/10 on intermediate length scales for increasing overlap of the chains. The chain size in a network consists of a fluctuating and a time average "elastic" contribution. The elastic contribution swells essentially affinely ∝(ϕ0/ϕ)2/3, whereas the swelling of the fluctuating part lies between the expected swelling of the entanglement constraints and the swelling of non-cross-linked chains in a comparable semi-dilute solution. The total swelling of chain size results from the changes of both fluctuating and non-fluctuating contributions.


Assuntos
Polímeros , Polímeros/química , Simulação por Computador , Conformação Molecular
15.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125959

RESUMO

Glucagon receptor (GCGR) is a class B1 G-protein-coupled receptor that plays a crucial role in maintaining human blood glucose homeostasis and is a significant target for the treatment of type 2 diabetes mellitus (T2DM). Currently, six small molecules (Bay 27-9955, MK-0893, MK-3577, LY2409021, PF-06291874, and LGD-6972) have been tested or are undergoing clinical trials, but only the binding site of MK-0893 has been resolved. To predict binding sites for other small molecules, we utilized both the crystal structure of the GCGR and MK-0893 complex and dynamic conformations. We docked five small molecules and selected the best conformation based on binding mode, docking score, and binding free energy. We performed MD simulations to verify the binding mode of the selected small molecules. Moreover, when selecting conformations, results of competitive binding were referred to. MD simulation indicated that Bay 27-9955 exhibits moderate binding stability in Pocket 3. MK-3577, LY2409021, and PF-06291874 exhibited highly stable binding to Pocket 2, consistent with experimental results. However, LY2409021 may also bind to Pocket 5. Additionally, LGD-6972 exhibited relatively stable binding in Pocket 5. We also conducted structural modifications of LGD-6972 based on the results of MD simulations and predicted its analogues' bioavailability, providing a reference for the study of GCGR small molecules.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores de Glucagon , Sítios de Ligação , Humanos , Cristalografia por Raios X , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Ligantes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
16.
Angew Chem Int Ed Engl ; 63(40): e202408622, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38982982

RESUMO

Ethanolamine hydrates containing from one to seven water molecules were identified via rotational spectroscopy with the aid of accurate quantum chemical methods considering anharmonic vibrational corrections. Ethanolamine undergoes significant conformational changes upon hydration to form energetically favorable hydrogen bond networks. The final structures strongly resemble the pure (H2O)3-9 complexes reported before when replacing two water molecules by ethanolamine. The 14N nuclear quadrupole coupling constants of all the ethanolamine hydrates have been determined and show a remarkable correlation with the strength of hydrogen bonds involving the amino group. After addition of the seventh water molecule, both hydrogen atoms of the amino group actively contribute to hydrogen bond formation, reinforcing the network and introducing approximately 21-27 % ionicity towards the formation of protonated amine. These findings highlight the critical role of microhydration in altering the electronic environment of ethanolamine, enhancing our understanding of amine hydration dynamics.

17.
Angew Chem Int Ed Engl ; : e202413340, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183174

RESUMO

An efficient strategy for high-performance chiral materials is to design and synthesize host molecules with left- and right- (M- and P-) twisted conformations and to control their twisted conformations. For this, a quantitative analysis is required to describe the chiroptical inversion, chiral transfer, and chiral recognition in the host-guest systems, which is generally performed using circular dichroism (CD) and/or proton nuclear magnetic resonance (1H-NMR) spectroscopies. However, the mass-balance model that considers the M- and P-twisted conformations has not yet been established. In this study, we derived the novel equations based on the mass-balance model for the 1:1 host-guest systems. Then, we further applied them to analyze the 1:1 host-guest systems for the achiral calixarene-based capsule molecule, achiral dimeric zinc porphyrin tweezer molecule, and chiral pillar[5]arene with the chiral and/or achiral guest molecules by using the data obtained from the CD titration, variable temperature CD (VT-CD), and 1H-NMR experiments. The thermodynamic parameters (ΔH and ΔS), equilibrium constants (K), and molar CD (Δε) in the 1:1 host-guest systems could be successfully determined by the theoretical analyses using the derived equations.

18.
J Biol Chem ; 298(4): 101819, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283191

RESUMO

The conformationally dynamic HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies (bnAbs) that block viral entry. Single-molecule Förster resonance energy transfer (smFRET) has revealed that HIV-1 Env exists in at least three conformational states on the virion. Prior to complete host-receptor engagement (State 3), Env resides most prevalently in the smFRET-defined State 1, which is preferentially recognized by most bnAbs that are elicited by natural infection. smFRET has also revealed that soluble trimers containing prefusion-stabilizing disulfide and isoleucine-to-proline substitutions reside primarily in State 2, which is a required intermediate between States 1 and 3. While high-resolution Env structures have been determined for States 2 and 3, the structure of these trimers in State 1 is unknown. To provide insight into the State 1 structure, here we characterized antigenic differences between smFRET-defined states and then correlated these differences with known structural differences between States 2 and 3. We found that cell surface-expressed Env was enriched in each state using state-enriching antibody fragments or small-molecule virus entry inhibitors and then assessed binding to HIV-1 bnAbs preferentially binding different states. We observed small but consistent differences in binding between Env enriched in States 1 and 2, and a more than 10-fold difference in binding to Env enriched in these states versus Env enriched in State 3. We conclude that structural differences between HIV-1 Env States 1 and 3 are likely more than 10-fold greater than those between States 1 and 2, providing important insight into State 1.


Assuntos
Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV , HIV-1/metabolismo , Humanos , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
19.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36136729

RESUMO

Protein evolution depends on the adaptation of these molecules to different functional challenges. This occurs by tuning their biochemical, biophysical, and structural traits through the accumulation of mutations. While the role of protein dynamics in biochemistry is well recognized, there are limited examples providing experimental evidence of the optimization of protein dynamics during evolution. Here we report an NMR study of four variants of the CTX-M ß-lactamases, in which the interplay of two mutations outside the active site enhances the activity against a cephalosporin substrate, ceftazidime. The crystal structures of these enzymes do not account for this activity enhancement. By using NMR, here we show that the combination of these two mutations increases the backbone dynamics in a slow timescale and the exposure to the solvent of an otherwise buried ß-sheet. The two mutations located in this ß-sheet trigger conformational changes in loops located at the opposite side of the active site. We postulate that the most active variant explores alternative conformations that enable binding of the more challenging substrate ceftazidime. The impact of the mutations in the dynamics is context-dependent, in line with the epistatic effect observed in the catalytic activity of the different variants. These results reveal the existence of a dynamic network in CTX-M ß-lactamases that has been exploited in evolution to provide a net gain-of-function, highlighting the role of alternative conformations in protein evolution.


Assuntos
Ceftazidima , Escherichia coli , Antibacterianos/farmacologia , Ceftazidima/química , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Escherichia coli/genética , Solventes/farmacologia , beta-Lactamases/metabolismo
20.
J Comput Chem ; 44(13): 1236-1249, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36999748

RESUMO

Designing movesets providing high quality protein conformations remains a hard problem, especially when it comes to deform a long protein backbone segment, and a key building block to do so is the so-called tripeptide loop closure (TLC). Consider a tripeptide whose first and last bonds ( N 1 C α ; 1 and C α ; 3 C 3 ) are fixed, and so are all internal coordinates except the six ϕ ψ i = 1,2,3 dihedral angles associated to the three C α carbons. Under these conditions, the TLC algorithm provides all possible values for these six dihedral angles-there exists at most 16 solutions. TLC moves atoms up to ∼ 5 Å in one step and retains low energy conformations, whence its pivotal role to design move sets sampling protein loop conformations. In this work, we relax the previous constraints, allowing the last bond ( C α ; 3 C 3 ) to freely move in 3D space-or equivalently in a 5D configuration space. We exhibit necessary geometric constraints in this 5D space for TLC to admit solutions. Our analysis provides key insights on the geometry of solutions for TLC. Most importantly, when using TLC to sample loop conformations based on m consecutive tripeptides along a protein backbone, we obtain an exponential gain in the volume of the 5 m -dimensional configuration space to be explored.


Assuntos
Algoritmos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa