Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
New Phytol ; 243(2): 591-606, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785184

RESUMO

Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.


Assuntos
Secas , Característica Quantitativa Herdável , Estações do Ano , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Análise de Componente Principal , Folhas de Planta/fisiologia , Agricultura/métodos , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
2.
J Environ Manage ; 366: 121689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991340

RESUMO

In North Bihar (NB), the conventional rice-wheat cropping system has led to soil, water, and environmental degradation, alongside low profitability, threatening sustainability. To address these concerns, a thorough field research was conducted over the course of three years to assess different methods of tillage and crop establishment in a rice, wheat, and greengram cycle. The experiment involved five scenarios with different combinations of crop rotation, tillage techniques, seeding procedures, fertilizer use, and irrigation strategies. Uncertainty analysis showed no significant change in mean and variance estimation among seven scenario replications at 5% significance level. Compared to traditional farming (SN-1), managing DSR-rice (SN-5) increased profitability by 17.56%, improved energy use efficiency (EUE) by 32.16%, and reduced irrigation by 24.76% and global warming potential (GWP) by 23.46%. Similarly, substituting zero tillage wheat (ZTW) SN-5 resulted in comparable profitability gains (18.25%) and significant improvements in irrigation (10 %), EUE (+48.65%), and GWP (-20 %) compared to SN-1. Green gram ZT also showed increased profitability (17.35%), with notable improvements in EUE (+38.31%) and GWP (-12.92%) compared to SN-1. Principal component and correlation analyses revealed relationships between total energy inputs, yields, economic returns, and sustainability indices, highlighting the benefits of crop rotation and tillage practices in optimizing resource use. The study suggests that compared to conventional systems, significant improvements in productivity, profitability, energy-use efficiency, and environmental mitigation can be achieved with Crop Rotation and Tillage Operations techniques.


Assuntos
Agricultura , Produtos Agrícolas , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Índia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/economia , Agricultura/métodos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Verduras/crescimento & desenvolvimento , Verduras/metabolismo , Incerteza , Energia Renovável/economia , Irrigação Agrícola/economia , Irrigação Agrícola/métodos
3.
Environ Manage ; 74(4): 742-756, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39078521

RESUMO

The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm's pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers' agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.


Assuntos
Agricultura , Produtos Agrícolas , Aprendizado de Máquina , South Dakota , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Glycine max/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Zea mays/crescimento & desenvolvimento , Mudança Climática , Monitoramento Ambiental/métodos
4.
J Environ Manage ; 345: 118904, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659371

RESUMO

The negative impacts of conventional agriculture and the imperative to adopt conservation tillage garnered significant attention. However, the effects of conservation tillage on soil enzyme activities still lack comprehensive cognition. Here, we collected 14,308 pairwise observations from 369 publications worldwide to systematically evaluate the effects of different conservation tillage practices (reduced tillage (T), reduced tillage with straw return (TS), reduced tillage with straw mulch return (TSO), no-tillage (NT), no-tillage with straw return (NTS), and no-tillage with straw mulch return (NTSO)) on the activities of 35 enzymes in soil. The results showed that: (1) the effect of conservation tillage on soil enzyme activity varied by enzyme type, except for peroxidase (-12.34%), which showed an overall significant positive effect (10.28-89.76%); (2) the NTS and TS demonstrated strong potential to improve soil enzyme activities by increasing a wide variety of soil enzyme activities (12-15) and efficacy (9.76-75.56%) than other conservation tillage (8.60-68.68%); (3) in addition, the effect of conservation tillage on soil enzyme activity was regulated by soil depth, crop type, years of conservation tillage, climate (mean annual precipitation and temperature), and soil physicochemical properties (e.g., pH, bulk density, electrical conductivity, organic matter, ammonium nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, etc.). Overall, our quantitative analysis clearly suggests that conservation tillage is an effective measure for improving soil enzyme activity on global croplands, where combination of reduced tillage or no-till with straw return are considered to have great potential and promise. The results contribute to better comprehend the effects of conservation tillage on soil activity and provide a valuable insight for agricultural management.


Assuntos
Agricultura , Solo , Clima , Fósforo , Potássio
5.
Cereal Res Commun ; : 1-23, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37361480

RESUMO

Rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system in north-western Indo-Gangetic Plains performed a crucial role in the national food security. However, the widespread and intensive cultivation of this system has led to serious problems such as declining groundwater table (~1 meter year-1) with sharp increase in number of districts under over-exploitation category, residue burning, higher greenhouse gases emission and herbicide resistance in weeds, causing stagnant crop productivity and lesser profitability. In this review article, an attempt has been made to discuss the major issues pertaining to intensive rice-wheat cultivation amidst climate vagaries and futuristic approach to address these challenges. Different tillage- and crop-specific recommendations such as adoption of direct seeded rice, diversification with lesser resource guzzling crops such as maize (Zea mays L.) at least on the periodic manner especially in light-medium soils, inclusion of summer legumes and alternative tillage systems (permanent beds and zero tillage with residue retention) have been suggested to address these issues. However, crop performance under these techniques has been found to be location, soil and cultivar specific. The absence of aerobic tailored genotypes and weeds have been identified as the major constraints in adoption of direct seeded rice. The integrated strategies of conservation tillage, crop breeding program and resource conserving region- and soil-specific agronomic measures with crop diversification would be helpful in tackling the sustainability issues. It requires future efforts on developing crop genotypes suited to conservation tillage, effective weed control strategies and trainings and demonstrations to farmers to switch from conventional rice-wheat system to alternative cropping systems.

6.
J Sci Food Agric ; 102(6): 2330-2341, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34625962

RESUMO

BACKGROUND: Poor inferior kernel grain filling is a challenge that limits summer maize yield. The effect and mechanism of conservation tillage on improving grain filling of inferior kernel in semi-arid rained areas remain uncertain and there has been little research on tillage management integrated with straw mulching to improve soil water content and photosynthesis in the Loess Plateau region. A 2 year (2019-2020) field experiment was established to study the impact of tillage practices on soil water content and summer maize root system morphology, photosynthetic capacity, inferior kernel grain filling, and grain yield. Treatments included reduced tillage (RT), no tillage (NT), and conventional tillage (CT). RESULTS: Under RT and NT, the final 100-kernel weight and maximum and mean grain filling rates were higher than CT. Reduced tillage and NT increased soil water content at the jointing stage, silking stage and grain filling stage in comparison with CT. They increased root system morphology and dry matter accumulation, net photosynthetic rate, transpiration efficiency, and stomatal conductance in comparison with CT, and they also decreased intercellular CO2 concentration, and they increased chlorophyll content and above-ground dry matter accumulation in comparison with CT. Reduced tillage and NT increased evapotranspiration of maize, and ultimately, increased grain yield by 17% and 14%, respectively, in comparison with CT. CONCLUSION: Conservation tillage could promote summer maize photosynthetic capacity and grain filling of inferior kernels by regulating soil water content and root system morphology. © 2021 Society of Chemical Industry.


Assuntos
Solo , Zea mays , Agricultura , China , Fotossíntese , Solo/química , Água/análise , Zea mays/fisiologia
7.
Plant Cell Environ ; 44(9): 2912-2924, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763869

RESUMO

Extreme events such as drought and heatwaves are among the biggest challenges to agricultural production and food security. However, the effects of cropping systems on drought resistance of arable crops via their hydraulic behaviour remain unclear. We investigated how hydraulic traits of a field-grown pea-barley (Pisum sativum L. and Hordeum vulgare L.) mixture were affected by different cropping systems, that is, organic and conventional farming with intensive or conservation tillage. Xylem vulnerability to cavitation of both species was estimated by measuring the pressure inducing 50% loss of hydraulic conductivity (P50 ), while the water stress plants experienced in the field were assessed using native percentage loss of hydraulic conductivity (nPLC). Pea and barley showed contrasting hydraulic behaviours: pea was less vulnerable to xylem cavitation and less stressed than barley; cropping systems affected the xylem vulnerability of barley, but not of pea. Barley grown under conventional farming with no tillage was more vulnerable and stressed than under organic farming with intensive tillage. nPLC proved to be a valuable indicator for plant water stress. Our results highlight the impact of cropping systems on crop xylem vulnerability and drought resistance, thus plant hydraulic traits, for protecting food security under future climate.


Assuntos
Produção Agrícola/métodos , Hordeum/fisiologia , Pisum sativum/fisiologia , Água/metabolismo , Desidratação , Hordeum/metabolismo , Pisum sativum/metabolismo , Xilema/metabolismo , Xilema/fisiologia
8.
J Environ Manage ; 277: 111388, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002812

RESUMO

Land degradation due to soil salinity and sodicity is a serious concern in arid ecosystems. Despite the importance of conservation tillage in carbon sequestration and improving soil properties, its effect on saline-sodic soils under amendment application remains unknown. Therefore, the present study aimed to explore the combined effects of inorganic (sulfuric acid and gypsum) and organic (vermicompost) soil amendments and tillage systems (zero, reduced and deep tillage) on saline-sodic soil properties and wheat productivity. Deep tillage with vermicompost application significantly improved soil physical and chemical properties compared with control. Interestingly, integration between deep tillage and vermicompost decreased soil salinity and sodicity by 37% and 34%, respectively, compared with zero tillage and unamended soils. The application of vermicompost surpassed chemical amendments in the improvement of saline-sodic soils and consequently increased the growth and yield of wheat, provided that deep tillage was used as a suitable tillage system. Although deep tillage reduced soil organic carbon, application of vermicompost not only compensated this reduction, but also significantly increased soil organic carbon. This confirms the potential of combined deep tillage and vermicompost as a method for environmentally reclaiming saline-sodic soils.


Assuntos
Solo , Triticum , Agricultura , Carbono , Sequestro de Carbono , Ecossistema
9.
J Environ Manage ; 276: 111223, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891982

RESUMO

Midwest corn producers face inherent risks in their daily operations and incorporate risk-management strategies to reduce uncertainty; among these, crop insurance has dominated the agricultural landscape for decades. Previous research on conservation adoption has primarily examined the impact of individual-level characteristics on adoption, yet little is known about the impact of external factors, such as crop insurance. Using a mixed-methods approach, we conducted semi-structured interviews and a multi-state survey to determine if crop insurance requirements limit cover crops and/or conservation tillage adoption for Midwest corn producers. Our findings indicate that crop insurance requirements are not a barrier to adoption. Rather, crop insurance and conservation practices serve unique - not contradictory - roles in Midwest producers' operations and are used simultaneously. Future research should continue to identify and seek solutions for external barriers to broadly increase adoption rates.


Assuntos
Agricultura , Produtos Agrícolas , Solo , Zea mays
10.
Glob Chang Biol ; 25(8): 2591-2606, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002465

RESUMO

Climate-smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta-analysis of 3,049 paired measurements from 417 peer-reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta-analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.


Assuntos
Sequestro de Carbono , Solo , Agricultura , Carbono , Fertilizantes
11.
Agric Ecosyst Environ ; 285: 106616, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31798199

RESUMO

The impact of farmland nutrient losses on environment security is of serious concern. Conservation tillage led to reduced water and soil losses and increased grain yield, and is therefore one potential solution, but this approach requires an understanding of the complex adaptive traits for environment conditions. In this study, a 4-year field experiment was conducted to quantify the crop yield, runoff and soil water, organic C and N content dynamics in summer maize-winter wheat rations subjected to different tillage and straw management practices. Based on these, the effects of different tillage and straw management regimes on water, C and N balances of the soil-plant system was evaluated with a 11-year model prediction using the SPACSYS model. The treatments used in this study included conventional tillage (CT) with straw removal, conventional tillage with straw returning (CTSR), reduced tillage (RT) with straw removal and reduced tillage with straw returning (RTSR). The results showed that maize yield was remarkably affected by straw returning while there was no significant tillage effect. By contrast, wheat yield showed a high inter-annual variability, but was not significantly influenced by tillage and straw management practices. The soil water balance analysis demonstrated that the treatments with straw returning improved water use efficiency by increasing transpiration while reducing water losses through evaporation and runoff, compared to the straw-removal treatments. The simulations for all of the treatments showed that the soils acted as C and N sinks in the present study. Furthermore, plots that included straw returning amassed more C and N in the soil than the that with straw removal. Our work demonstrates that in maize-wheat rotation slopping land reduced tillage with straw returning is a win-win practice for the equilibrium between agricultural productivity and low soil water, C and N losses.

12.
Bull Environ Contam Toxicol ; 98(4): 447-453, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078369

RESUMO

The study examined the influence of land-use (cropping patterns) and integrated agricultural best management practices (BMPs) on spring herbicide levels in an agricultural watershed. Atrazine and metolachlor were applied for weed control during spring of 1998-2002, 2005, and 2007-2013. Watershed-wide mass of applied herbicides ranged from 12.7 to 209.2 g atrazine and 10.9-302.2 g metolachlor with greatest application during 1998, 2009-2010 (atrazine) and 2007-2013 (metolachlor). Spring herbicide concentrations in Beasley Lake water ranged from below detection to 3.54 µg atrazine/L and 3.01 µg metolachlor/L. Multiple linear regression analyses with cropping patterns, BMPs, rainfall and time as independent variables, showed atrazine applications were associated with increases in cotton acreage and quail buffer, while metolachlor applications increased over time. Multiple linear regressions showed lake atrazine concentrations were associated with conservation tillage, rainfall, and corn, while lake metolachlor concentrations were associated with the cumulative metolachlor application and sediment retention pond installation.


Assuntos
Acetamidas/análise , Agricultura , Atrazina/análise , Lagos/química , Herbicidas/análise , Guias de Prática Clínica como Assunto , Estações do Ano
13.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27559064

RESUMO

Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Solo , Produtos Agrícolas , Controle de Plantas Daninhas
14.
Sci Total Environ ; 948: 174716, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39004355

RESUMO

Reducing greenhouse gas (GHG) emissions from agricultural ecosystems is vital to mitigate global warming. Conservation tillage is widely used in farmland management to improve soil quality; however, its effects on soil GHG emissions remain poorly understood, particularly in high-yield areas. Therefore, our study aimed to evaluate the effects of no-tillage (NT) combined with four straw-mulching levels (0 %, 33 %, 67 %, and 100 %) on GHG emission risk and the main influencing factors. We conducted in-situ observations of GHG emissions from soils under different management practices during the maize-growing season in Northeastern China. The results showed that NT0 (705.94 g m-2) reduced CO2 emissions by 18 % compared to ridge tillage (RT, 837.04 g m-2). Different straw mulching levels stimulated N2O emissions after rainfall, particularly under NT combined with 100 % straw mulching (2.89 kg ha-1), which was 45 % higher than that in any other treatments. The CH4 emissions flux among different treatments was nearly zero. Overall, straw mulching levels had no significant effect on the GHG emissions. During the growing season, soil NH4+-N (< 20 mg kg-1) remained low and decreased with the extension of growth stage, whereas soil NO3--N initially increased and then decreased. More importantly, the results of structural equation modeling indicate that: a) organic material input and soil moisture are key factors affecting CO2 emissions, b) nitrogen fertilizer and soil moisture promote N2O emissions, and c) climatic factors exert an inexorable influence on the GHG emissions process. Our conclusions emphasize the necessity of incorporating precipitation-response measures into farmland management to reduce the risk of GHG emissions.

15.
Plants (Basel) ; 13(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124202

RESUMO

The combination of no-till farming and green manure is key to nourishing the soil and increasing crop yields. However, it remains unclear how to enhance the efficiency of green manure under no-till conditions. We conducted a two-factor field trial of silage maize rotated with hairy vetch to test the effects of tillage methods and returning. Factor 1 is the type of tillage, which is divided into conventional ploughing and no-tillage; factor 2 is the different ways of returning hairy vetch as green manure, which were also compared: no return (NM), stubble return (H), mulching (HM), turnover (HR, for CT only), and live coverage (LM, for NT only). Our findings indicate that different methods of returning hairy vetch to the field will improve maize yield and quality. The best results were obtained in CT and NT in HM and LM, respectively. Specifically, HM resulted in the highest dry matter quality and yield, with improvements of 35.4% and 31.9% over NM under CT, respectively. It also demonstrated the best economic and net energy performance. However, other treatments had no significant effect on the beneficial utilization and return of nutrients. The LM improved yields under NT by boosting soil enzyme activity, promoting nitrogen transformation and accumulation, and increasing nitrogen use efficiency for better kernel development. Overall, NTLM is best at utilizing and distributing soil nutrients and increasing silage maize yield. This finding supports the eco-efficient cultivation approach in silage maize production in the region.

16.
Sci Total Environ ; 950: 175228, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39102954

RESUMO

Soil freeze-thaw cycles (FTCs) are common in temperate agricultural ecosystems during the non-growing season and are progressively influenced by climate change. The impact of these cycles on soil microbial communities, crucial for ecosystem functioning, varies under different agricultural management practices. Here, we investigated the dynamic changes in soil microbial communities in a Mollisol during seasonal FTCs and examined the effects of stover mulching and nitrogen fertilization. We revealed distinct responses between bacterial and fungal communities. The dominant bacterial phyla reacted differently to FTCs: for example, Proteobacteria responded opportunistically, Actinobacteria, Acidobacteria, Choroflexi and Gemmatimonadetes responded sensitively, and Saccharibacteria exhibited a tolerance response. In contrast, the fungal community composition remained relatively stable during FTCs, except for a decline in Glomeromycota. Certain bacterial OTUs acted as sensitive indicators of FTCs, forming keystone modules in the network that are closely linked to soil carbon, nitrogen content and potential functions. Additionally, neither stover mulching nor nitrogen fertilization significantly influenced microbial richness, diversity and potential functions. However, over time, more indicator species specific to these agricultural practices began to emerge within the networks and gradually occupied the central positions. Furthermore, our findings suggest that farming practices, by introducing keystone microbes and changing interspecies interactions (even without changing microbial richness and diversity), can enhance microbial community stability against FTC disturbances. Specifically, higher nitrogen input with stover removal promotes fungal stability during soil freezing, while lower nitrogen levels increase bacterial stability during soil thawing. Considering the fungal tolerance to FTCs, we recommend reducing nitrogen input for manipulating bacterial interactions, thereby enhancing overall microbial resilience to seasonal FTCs. In summary, our research reveals that microbial responses to seasonal FTCs are reshaped through land management to support ecosystem functions under environmental stress amid climate change.


Assuntos
Agricultura , Mudança Climática , Congelamento , Microbiota , Estações do Ano , Microbiologia do Solo , Solo , Agricultura/métodos , Solo/química , Bactérias , Ecossistema , Fungos , Nitrogênio/análise
17.
Sci Total Environ ; 951: 175749, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39187085

RESUMO

Soil organic matter has been well acknowledged as a natural solution to mitigate climate change and to maintain agricultural productivity. Microbial necromass is an important contributor to soil organic carbon (SOC) storage, and serves as a resource pool for microbial utilization. The trade-off between microbial births/deaths and resource acquisition might influence the fate of microbial necromass in the SOC pool, which remains poorly understood. We coupled soil microbial assembly with microbial necromass contribution to SOC on a long-term, no-till (NT) farm that received maize (Zea mays L.) stover mulching in amounts of 0 %, 33 %, 67 %, and 100 % for 8 y. We characterized soil microbial assembly using the Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP), and microbial necromass using its biomarker amino sugars. We found that 100 % maize stover mulching (NT100) was associated with significantly lower amino sugars (66.4 mg g-1 SOC) than the other treatments (>70 mg g-1 SOC). Bacterial and fungal communities responded divergently to maize stover mulching: bacterial communities were positive for phylogenetic diversity, while fungal communities were positive for taxonomic richness. Soil bacterial communities influenced microbial necromass contribution to SOC through determinism on certain phylogenetic groups and bacterial bin composition, while fungal communities impacted SOC accumulation through taxonomic richness, which is enhanced by the positive contribution of dispersal limitation-dominated saprotrophic guilds. The prevalence of homogeneous selection and dispersal limitation on microbial cell wall-degrading bacteria, specifically Chitinophagaceae, along with increased soil fungal richness and interactions, might induce the decreased microbial necromass contribution to SOC under NT100. Our findings shed new light on the role of microbial assembly in shaping the dynamics of microbial necromass and SOC storage. This advances our understanding of the biological mechanisms that underpin microbial necromass associated with SOC storage, with implications for sustainable agriculture and mitigation of climate change.


Assuntos
Carbono , Microbiologia do Solo , Solo , Zea mays , Solo/química , Microbiota , Agricultura/métodos , Fungos , Sequestro de Carbono , Bactérias/classificação , Mudança Climática
18.
Sci Total Environ ; 954: 176315, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304147

RESUMO

Conservation tillage practices, including reduced tillage (RT), no-tillage (NT) and straw return (SR), have been widely adopted to enhance soil organic carbon density (PSOC) and improve the soil quality while mitigating the negative environmental impacts of intensive farming. However, current studies on the effects of these practices on SOC sequestration and N2O flux show considerable variability, making it challenging to draw definitive conclusions about the individual and combined impacts of conservation tillage practices and introducing substantial uncertainty in estimating the agricultural sector's potential to mitigate climate change. To address this gap, we conducted a meta-analysis of 902 pairwise comparisons from 90 peer-reviewed publications to evaluate the effects of five conservation tillage practices (straw return (SR), reduced tillage (RT), no-tillage (NT), straw return combined with tillage reduction (SR + RT) and straw returning combined with no-tillage (SR + NT)) on C sequestration and N2O emissions from agricultural soils. The results show that SR was the most effective practice for increasing SOC content (23.7 %), followed by RT + SR (5.5 %) and NT + SR (4.4 %). Additionally, RT (12.3 %) and NT (14.3 %) significantly reduced soil N2O emissions. This study also identified key drivers, including climatic factors, soil properties, and agricultural management practices, that influence SOC content and N2O emissions under different conservation tillage practices. For example, the mean annual precipitation, mean annual temperature, soil type, pH, soil total nitrogen content, N application rate, and experiment duration were identified as the key factors affecting SOC content and N2O emissions Specifically, suitable temperature, lower rainfall and alkaline soil environment significantly enhanced the C sequestration efficiency of SR, while suitable climatic conditions and soil texture combined with an alkaline environment contributed to a significant reduction in long-term NT soil N2O emissions. These results provide a robust scientific foundation for the strategic implementation of conservation tillage to reduce greenhouse gas emissions, mitigate global warming, and enhance soil C sequestration capacity.

19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 695-704, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646757

RESUMO

To understand the effects of different stover mulching amounts in no-tillage on soil carbon and nitrogen contents and enzyme activities, finding a stover mulching amount which can meet the requirement of soil carbon and nitrogen accumulation while maximizing economic benefits, we conducted a long-term conservation tillage field experiment since 2007 in Mollisols area of Northeast China. We analyzed soil carbon and nitrogen contents, enzyme activities and economic benefits under conventional tillage (Control, CT), no-tillage without stover mulching (NT0), no-tillage with 33% stover mulching (NT33), no-tillage with 67% stover mulching (NT67), and no-tillage with 100% stover mulching (NT100) before planting in May 2020. The results showed that compared with CT, NT0 did not affect soil organic carbon (SOC) and total nitrogen (TN) contents, but increased soil organic carbon recalcitrance and decreased the availability of dissolved organic nitrogen (DON) and ammonium nitrogen. Compared with NT0, no-tillage with stover mulching significantly increased SOC contents in 0-10 cm layer and increased with the amounts of stover. In addition, NT67 and NT100 significantly increased SOC stocks, facilitating the accumulation of soil organic matter. The effects of different stover mulching amounts on soil nitrogen content in 0-10 cm layer were different. Specifically, NT33 increased DON content and DON/TN, NT67 increased DON content, while NT100 increased TN content. Compared with CT, NT0 decreased peroxidase (POD) activity in 0-10 cm layer. Compared with NT0, NT33 increased ß-glucosidase (ßG), cellobiase (CB), 1,4-ß-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO) and POD activities, while NT67 only increased CB, NAG and POD activities in 0-10 cm soil layer, both alleviated microbial nutrient limitation. NT100 increased PPO activity in 10-20 cm layer. NT33 increased carbon conversion efficiency of stover compared with NT100, and had the highest economic benefit. In all, no-tillage with 33% stover mulching was the optimal strategy, which could promote nutrient circulation, boost stover utilization efficiency, improve the quality of Mollisols, and maximize guaranteed income.


Assuntos
Agricultura , Carbono , Ciclo do Nitrogênio , Nitrogênio , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Agricultura/métodos , China
20.
Heliyon ; 10(4): e26524, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420378

RESUMO

This study investigates the effects of tillage and mulching regimes on rice-sweet corn systems in the lower Gangetic plains, focusing on region-specific and crop-specific impacts on soil-crop-environmental parameters. The experiment consisted of three levels of tillage: conventional (CT), minimum (MT), and zero (ZT), and four levels of mulching: live, leaf litter, paddy straw, and no mulching. The results show that ZT tillage resulted in higher bulk density (BD) compared to other treatments, despite an increase in soil organic carbon (SOC). Live and leaf litter mulching led to slight reductions in BD in the upper soil layers. CT resulted in net depletion of SOC whereas ZT registered a positive sequestration rate of 1.19 Mg ha-1 yr-1. Live and leaf litter mulching increased SOC sequestration by 42.6% and 38.8% compared to paddy straw mulching, respectively. Initially, ZT resulted in a 10.3% reduction in system productivity compared to CT, while MT yields were comparable to CT. However, mulching regimes consistently improved production by 16.4%-25.2% as compared to no mulch. ZT and MT were found to be more affordable than CT, with cost savings of 18.2% and 6.8%, respectively. ZT had the highest B: C ratio, indicating better economic efficiency. Among the mulching treatments, live mulching was the most economical. Both ZT and MT saved input energy by approximately 22.9% and 13.5%, respectively compared to CT. Live mulching resulted in the highest net energy and energy output. Compared to CT, ZT reduced carbon footprint (CF) by 41.5 and 22.2% in rice and sweet corn, respectively. MT scored midway between ZT and CT in all parameters. CT exhibited several limitations, including high input energy requirements, high cost of cultivation, poor economic efficiency, negative environmental impacts, and loss of SOC. ZT initially experienced yield reduction and lower net returns in the early years. Therefore, MT was identified as the best alternative in the initial years before transitioning completely to ZT, as it provided comparable yields to CT with better overall benefits. Among the soil cover regimes, live mulching was found to be the most favorable option across all dimensions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa