Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Biometeorol ; 66(11): 2311-2324, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107252

RESUMO

High altitudes have been exposed to enhanced levels of surface ozone (O3) concentrations over recent decades compared to the pre-industrial era. The responses of vegetation to this toxic pollutant are species-specific and depend on the climate conditions. In this paper, we explored the reaction of Pinus mugo (P. mugo) to O3-induced stress in the continental climate of an ozone-rich mountain area in the High Tatra Mountains (Western Carpathians). The effects of O3 doses modelled by a deposition model, O3 concentrations and other factors on P. mugo were identified from (a) satellite-based data via NDVI (normalised differenced vegetation index) over 2000-2020 and (b) visible injury on needle samples gathered from P. mugo individuals at ground-truth sites in 2019 and 2020. Analysing the NDVI trend, we observed non-significant changes (p > 0.05) in the greenness of P. mugo despite growing in an environment with the average seasonal O3 concentration around 51.6 ppbv, the maximum hourly concentrations more than 90 ppbv and increasing trend of O3 doses by 0.1 mmol m-2 PLA (plant leaf area) year-1. The visible O3 injury of samples collected at study sites was low (mean injury observed on 1-10% of needles' surface), and the symptoms of injury caused by other biotic and abiotic factors prevailed over those caused by O3. In addition, the correlation analyses between NDVI and the climatic factors indicated a significant (p < 0.05) and positive relationship with photosynthetic active radiation (R = 0.45) in July, and with stomatal conductance (R = 0.52) and temperature factor (R = 0.43) in August. Therefore, we concluded that the positive effect of climate conditions, which support the growth processes of P. mugo, may suppress the negative effect of the mean O3 doses of 17.8 mmol m-2 PLA accumulated over the growing season.


Assuntos
Poluentes Atmosféricos , Ozônio , Pinus , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Folhas de Planta , Poliésteres/análise , Poliésteres/farmacologia
2.
Proc Natl Acad Sci U S A ; 115(19): 4863-4868, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686095

RESUMO

In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

3.
J Invertebr Pathol ; 149: 1-7, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694120

RESUMO

Thirty-four isolates of Metarhizium spp. from Russian collections were genotyped using 5' EF-1α gene sequence analysis. Four species were identified, of which M. robertsii and M. brunneum were the most frequent, whereas M. anisopliae and M. pemphigum were sporadic. Radial growth studies in the temperature range of 10-40°C revealed that growth at high temperatures (35-37.5°C) was inherent for M. robertsii isolates but not for M. brunneum isolates. In contrast, M. brunneum isolates were more active at cold temperatures (10°C) compared to M. robertsii. Virulence was evaluated against larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say, under two regimes: humid (21°C, 80% relative humidity (RH)) and arid (31°C, 55% RH). M. brunneum isolates were less virulent compared to M.robertsii under both regimes. M. robertsii activity did not differ under the two regimes, but M. brunneum was less virulent under the arid regime compared to the humid one. A field experiment under natural conditions (steppe zone of Western Siberia) with daily ranges of 10-43°C and 13-98% RH showed that M. robertsii was significantly more active than M. brunneum against CPB larvae.


Assuntos
Besouros/microbiologia , Larva/microbiologia , Metarhizium/fisiologia , Controle Biológico de Vetores/métodos , Animais , Temperatura Baixa , Temperatura Alta , Metarhizium/isolamento & purificação
4.
Ecol Evol ; 12(8): e9169, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919392

RESUMO

Species distribution models (SDMs) across past, present, and future timelines provide insights into the current distribution of these species and their reaction to climate change. Specifically, if a species is threatened or not well-known, the information may be critical to understand that species. In this study, we computed SDMs for Orientocoluber spinalis, a monotypic snake genus found in central and northeast Asia, across the past (last interglacial, last glacial maximum, and mid-Holocene), present, and future (2070s). The goal of the study was to understand the shifts in distribution across time, and the climatic factors primarily affecting the distribution of the species. We found the suitable habitat of O. spinalis to be persistently located in cold-dry winter and hot summer climatic areas where annual mean temperature, isothermality, and annual mean precipitation were important for suitable habitat conditions. Since the last glacial maximum, the suitable habitat of the species has consistently shifted northward. Despite the increase in suitable habitat, the rapid alterations in weather regimes because of climate change in the near future are likely to greatly threaten the southern populations of O. spinalis, especially in South Korea and China. To cope with such potential future threats, understanding the ecological requirements of the species and developing conservation plans are urgently needed.

5.
Data Brief ; 43: 108424, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845094

RESUMO

This article describes a suite of global climate model output files that provide continental climatic conditions (monthly temperatures, precipitation, evaporation, precipitation minus evaporation balance, runoff) together with the calculated Köppen-Geiger climate classes and topography, for 28 evenly spaced time slices through the Phanerozoic (Cambrian to Quaternary, 540 Ma to 0 Ma). Climatic variables were simulated with the Fast Ocean Atmosphere Model (FOAM), using a recent set of open-access continental reconstructions with paleotopography and recent atmospheric CO2 and solar luminosity estimates. FOAM is a general circulation model frequently used in paleoclimate studies, especially in the Palaeozoic. Köppen-Geiger climate classes were calculated based on simulated temperature and precipitation fields using Wong Hearing et al.'s [1] implementation of Peel et al.'s [2] updated classification. This dataset provides a unique window onto changing continental climate throughout the Phanerozoic that accounts for the simultaneous evolution of paleogeography (continental configuration and topography), atmospheric composition and greenhouse gas forcing, and solar luminosity.

6.
Int J Circumpolar Health ; 80(1): 1978228, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547983

RESUMO

Deleterious effect of cold on overall mortality is well-established. We studied associations between the air temperature and the number f ambulance calls for asthma in Nur-Sultan, Kazakhstan - the second coldest capital in the world. Daily counts of ambulance calls for asthma in Nur-Sultan for the cold seasons (October-March) 2006-2010 were obtained from the Municipal Ambulance Station. Associations between the number of calls and mean and minimum apparent temperatures (average for lags 0-15) were studied using first-order Poisson auto-regression models controlling for wind speed and effects of month, year, weekends and holidays. Altogether, there were 7373 ambulance calls for asthma during the study period. An inverse association between minimum apparent temperature and the number of calls was observed for the age-group 60 years and older. A decrease of the minimum apparent temperature by 1°C was associated with an increase in the number of calls by 1.7% (95% CI: 0.1%-3.3%) across the whole temperature spectrum. No associations in other age groups were found. Our results suggest an inverse association between the average 15-day lag minimum apparent temperature and the number of ambulance calls during the cold season in Nur-Sultan, but this is limited to the oldest age-group.


Assuntos
Ambulâncias , Asma , Asma/epidemiologia , Temperatura Baixa , Humanos , Pessoa de Meia-Idade , Estações do Ano , Temperatura
7.
Artigo em Inglês | MEDLINE | ID: mdl-32977546

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is the most severe global health and socioeconomic crisis of our time, and represents the greatest challenge faced by the world since the end of the Second World War. The academic literature indicates that climatic features, specifically temperature and absolute humidity, are very important factors affecting infectious pulmonary disease epidemics - such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS); however, the influence of climatic parameters on COVID-19 remains extremely controversial. The goal of this study is to individuate relationships between several climate parameters (temperature, relative humidity, accumulated precipitation, solar radiation, evaporation, and wind direction and intensity), local morphological parameters, and new daily positive swabs for COVID-19, which represents the only parameter that can be statistically used to quantify the pandemic. The daily deaths parameter was not considered, because it is not reliable, due to frequent administrative errors. Daily data on meteorological conditions and new cases of COVID-19 were collected for the Lombardy Region (Northern Italy) from 1 March, 2020 to 20 April, 2020. This region exhibited the largest rate of official deaths in the world, with a value of approximately 1700 per million on 30 June 2020. Moreover, the apparent lethality was approximately 17% in this area, mainly due to the considerable housing density and the extensive presence of industrial and craft areas. Both the Mann-Kendall test and multivariate statistical analysis showed that none of the considered climatic variables exhibited statistically significant relationships with the epidemiological evolution of COVID-19, at least during spring months in temperate subcontinental climate areas, with the exception of solar radiation, which was directly related and showed an otherwise low explained variability of approximately 20%. Furthermore, the average temperatures of two highly representative meteorological stations of Molise and Lucania (Southern Italy), the most weakly affected by the pandemic, were approximately 1.5 °C lower than those in Bergamo and Brescia (Lombardy), again confirming that a significant relationship between the increase in temperature and decrease in virulence from COVID-19 is not evident, at least in Italy.


Assuntos
Clima , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Urbanização , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Itália , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Temperatura
8.
Materials (Basel) ; 13(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640666

RESUMO

This research analyses straw degradation inside straw bale walls in the region and develops the prediction of degradation inside straw bale walls. The results show that the straw inside straw bale walls have no serious concerns of degradation in the high hygrothermal environment in the region with only moderate concerns of degradation in the area 2-3 cm deep behind the lime render. The onsite investigations indicate that the degradation isopleth model can only predict straw conditions behind the rendering layer, whereas the isothermal model fits the complete situation inside straw bale walls. This research develops the models for predicting straw degradation levels inside a straw bale building in a warm (humid) continental climate. The impact of this research will help the growth of low carbon energy efficient straw bale construction with confidence pertaining to its long-term durability characteristics both in the region and regions sharing similar climatic features globally.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31547211

RESUMO

Cold spells and heat waves in a changing climate are well known as great public-health concerns due to their adverse effects on human health. However, very few studies have quantified health impacts of heat and cold in the region of Northwestern China. The purpose of the present study was to evaluate the effects of cold and heat on years of life lost (YLL) in Lanzhou, a city with temperate continental climate. We compiled a daily dataset including deaths, weather variables, and air pollutants in Lanzhou, China, from 2014-2017. We used a distributed lag non-linear model to estimate single-day and cumulative effects of heat and cold on daily YLL. Results indicated that both cold and heat were associated with increased YLL for registered residents in Lanzhou. Estimated heat effects appeared immediately in the first two days, while estimated cold effects lasted over a longer period (up to 30 days). Cold significantly increased the YLL of all residents except for males and those with respiratory diseases (≥65 years). Our results showed that both heat and cold had more pronounced effects on cardiovascular diseases compared to respiratory diseases. Males might be more vulnerable to heat, while females might suffer more YLL from cold. The effects of cold or heat on the elderly might appear earlier and last longer than those for other age groups.


Assuntos
Mudança Climática , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Expectativa de Vida , Idoso , Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/etiologia , China , Cidades , Clima , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Saúde Pública , Tempo (Meteorologia)
10.
Immunotherapy ; 9(15): 1219-1224, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29130801

RESUMO

House dust mite (HDM) is the most common cause of respiratory allergy worldwide. The impact of HDM allergy is influenced by a number of factors, including local climate. We investigated such issue in Italy, using a real-life setting, including outpatients visited at allergy clinics. In 9143 patients (7873 adults and 1270 children) who were evaluated in 15 allergy clinics, investigating as well the rate of prescription of allergen immunotherapy. The present study confirms that Mediterranean climate is associated with a higher prevalence of mite allergy than continental climate. This significant difference may have an impact on allergen immunotherapy prescription, which should be more common in areas with higher prevalence of HDM allergy.


Assuntos
Clima , Dessensibilização Imunológica/métodos , Hipersensibilidade/epidemiologia , Padrões de Prática Médica/estatística & dados numéricos , Adulto , Animais , Antígenos de Dermatophagoides/imunologia , Criança , Feminino , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Itália/epidemiologia , Masculino , Mar Mediterrâneo , Prevalência , Pyroglyphidae/imunologia , Fatores de Risco
11.
Plant Physiol Biochem ; 89: 123-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25769137

RESUMO

Volatile compounds are considered important for plants to communicate with each other and interact with their environments. Most wine-producing regions in China feature a continental monsoon climate with hot-wet summers and dry-cold winters, giving grapes markedly different growing environments compared to the Mediterranean or oceanic climates described in previous reports. This study focused on comparing the volatile profiles of Vitis vinifera L. cv. Cabernet Sauvignon berries from two regions with distinct climate characteristics: Changli has a warm and semi-humid summer, and Gaotai has a cool-arid summer and a cold winter. The relationship between meteorological metrics and the concentrations of grape volatiles were also examined. In harvested grapes, benzyl alcohol, phenylethyl alcohol, 1-hexanol and 1-octen-3-ol were more abundant in the Changli berries, while hexanal, heptanal, 2-methoxy-3-isobutylpyrazine, and (E)-ß-damascenone presented higher levels in the Gaotai berries. The fluctuation in the accumulation of volatile compounds observed during berry development was closely correlated with variations in short-term weather (weather in a week), especially rainfall. The concentration of some volatiles, notably aliphatic aldehydes, was significantly related to diurnal temperature differences. The variability during berry development of concentrations for compounds such as C6 volatile compounds, 2-methoxy-3-isobutylpyrazine and (E)-ß-damascenone strongly depended upon weather conditions. This work expands our knowledge about the influence of continental monsoon climates on volatile compounds in developing grape berries. It will also improve the comprehension of the plant response to their surrounding environments through the accumulation of volatiles. The results will help growers to alter viticultural practices according to local conditions to improve the aromatic quality of grapes.


Assuntos
Clima , Frutas/metabolismo , Óleos Voláteis/metabolismo , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Tempo (Meteorologia) , Vinho , China , Regulação da Expressão Gênica de Plantas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa