Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Small ; : e2404643, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016121

RESUMO

Nowadays, oral medications are the primary method of treating disease due to their convenience, low cost, and safety, without the need for complex medical procedures. To maximize treatment effectiveness, almost all oral medications utilize drug carriers, such as capsules, liposomes, and sugar coatings. However, these carriers rely on dissolution or fragmentation to achieve drug release, which leads to drugs and carriers coabsorption in the body, causing unnecessary adverse drug reactions, such as nausea, vomiting, abdominal pain, and even death caused by allergy. Therefore, the ideal oral drug carrier should avoid degradation and absorption and be totally excreted after drug release at the desired location. Herein, a gastrointestinally stable oral drug carrier based on porous aromatic framework-1 (PAF-1) is constructed, and it is modified with famotidine (a well-known gastric drug) and mesalazine (a well-known ulcerative colitis drug) to verify the excellent potential of PAF-1. The results demonstrate that PAF-1 can accurately release famotidine in stomach, mesalazine in the intestine, and finally be completely excreted from the body without any residue after 12 h. The use of PAF materials for the construction of oral drug carriers with no residue in the gastrointestinal tract provides a new approach for efficient disease treatment.

2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542189

RESUMO

The encapsulation of retinol within silica microparticles has emerged as a promising opportunity in the realm of cosmetic and pharmaceutical formulations, driven by the need to reinforce the photoprotection and oxidation stability of retinol. This work examines the process of encapsulating retinol into silica microparticles. The association efficiency, microparticle size, molecular structure, morphology, oxidation, and release profile, as well as biocompatibility and skin sensitization, were evaluated. Results showed that 0.03% of retinol and 9% of emulsifier leads to an association efficiency higher than 99% and a particle size with an average of 5.2 µm. FTIR results indicate that there is an association of retinol with the silica microparticles, and some may be on the surface. Microscopy indicates that when association happens, there is less aggregation of the particles. Oxidation occurs in two different phases, the first related to the retinol on the surface and the second to the associated retinol. In addition, a burst release of up to 3 h (30% free retinol, 17% associated retinol) was observed, as well as a sustained release of 44% of retinol up to 24 h. Encapsulation allowed an increase in the minimal skin cytotoxic concentrations of retinol from 0.04 µg/mL to 1.25 mg/mL without skin sensitization. Overall, retinol is protected when associated with silica microparticles, being safe to use in cosmetics and dermatology.


Assuntos
Retinoides , Saccharum , Preparações de Ação Retardada , Vitamina A , Dióxido de Silício/química , Tamanho da Partícula
3.
Pharm Dev Technol ; 29(2): 98-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38258531

RESUMO

Progesterone (PG) has been approved for hormone replacement therapy to mitigate the risk of endometrial carcinoma. However, there has been a lack of success in oral PG due to its rapid degradation. Transdermal PG has advantages but lacks efficacy due to its poor solubility (Log p = 3.9). Therefore, this study aimed to evaluate how combining self-microemulsifying drug delivery systems (SMEDDS) and polymeric microneedles (MNs) could improve the transdermal delivery of PG in a controlled-release manner. Among PG-SMEDDS, PG-SME5 was selected for its desirable properties and stability. The two-layer polymeric MNs formulation incorporating PG-SME5 (PG-SMEDDS-tMNs) was formulated from aqueous blends of polymers as a first layer and 20% PCL as a second layer. It successfully penetrated neonatal porcine skin with the dissolution of the first layer observed within 15 min after application. In vitro skin permeation revealed that the percentage of PG which permeated the skin over 82 h using PG-SMEDDS-tMNs was higher than a PG-suspension and PG-SMEDDS. The Higuchi kinetic showed controlled release over 15 days of PG from PG-SMEDDS-tMNs. These studies suggested that incorporating PG-SMEDDS into controlled-release two-layer polymeric MNs could be a promising approach for improving the transdermal delivery of PG.


Assuntos
Sistemas de Liberação de Medicamentos , Progesterona , Animais , Suínos , Emulsões , Preparações de Ação Retardada , Disponibilidade Biológica , Solubilidade , Polímeros , Administração Oral
4.
J Sci Food Agric ; 102(3): 1040-1046, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312864

RESUMO

BACKGROUND: In neutral or alkaline soils, iron (Fe) easily forms insoluble complexes, which makes it difficult for plants to utilize Fe in the soil for nutrition. Polyester sulfur-coated urea (PSCU) is a novel controlled-release fertilizer widely used in China and some foreign countries, and it has been proven that sulfur film from controlled-release fertilizers can significantly improve the activation of Fe and other elements in the soil. However, few studies have focused on the effects of PSCU application on Fe accumulation in rice grain in alkaline soils. RESULTS: Both our field and pot experiments proved that PSCU application could significantly improve rice grain yield and Fe concentration in brown rice in alkaline soil. This effect differs with different types of alkaline soils (i.e. medium-saline, sandy soil and/or silt soil). PSCU is released slowly, and the release rate is different in different alkaline soils. Rice shoot nitrogen (N) uptake was significantly enhanced with PSCU application. CONCLUSION: The results suggested that PSCU application in alkaline soils could significantly enhance brown rice Fe concentration and production. This effect differed with different kinds of alkaline soils. The study identified some efficient fertilizers to improve the Fe status in alkaline soils. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Ferro/análise , Oryza/metabolismo , Solo/química , Ureia/metabolismo , China , Produção Agrícola/instrumentação , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Poliésteres/química , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Enxofre/química , Ureia/química
5.
Mol Pharm ; 18(3): 898-914, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461296

RESUMO

Aiming to evaluate how the release profile of naproxen (nap) is influenced by its physical state, molecular mobility, and distribution in the host, this pharmaceutical drug was loaded in three different mesoporous silicas differing in their architecture and surface composition. Unmodified and partially silylated MCM-41 matrices, respectively MCM-41 and MCM-41sil, and a biphenylene-bridged periodic mesoporous organic matrix, PMOBph, were synthetized and used as drug carriers, having comparable pore sizes (∼3 nm) and loading percentages (∼30% w/w). The loaded guest was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dielectric relaxation spectroscopy (DRS). DSC and XRD confirmed amorphization of a nap fraction incorporated inside the pores. A narrower glass transition was detected for PMOBph_nap, taken as an indication of the impact of host ordering, which also hinders the guest molecular mobility inside the pores as probed by DRS. While the PMOBph matrix is highly hydrophobic, the unmodified MCM-41 readily adsorbs water, accelerating the nap relaxation rate in the respective composite. In the dehydrated state, the faster dynamics was found for the silylated matrix since guest-host hydrogen bond interactions were inhibited to some extent by methylation. Nevertheless, in all the prepared composites, bulk-like crystalline drug deposits outside pores in a greater extent in PMOBph_nap. The DRS measurements analyzed in terms of conductivity show that, upon melting, nap easily migrates into pores in MCM-41-based composites, while it stays in the outer surface in the ordered PMOBph, determining a faster nap delivery from the latter matrix. On the other side, the mobility enhancement in the hydrated state controls the drug delivery in the unmodified MCM-41 matrix vs the silylated one. Therefore, DRS proved to be a suitable technique to disclose the influence of the ordering of the host surface and its chemical modification on the guest behavior, and, through conductivity depletion, it provides a mean to monitor the guest entrance inside the pores, easily followed even by untrained spectroscopists.


Assuntos
Naproxeno/química , Dióxido de Silício/química , Adsorção/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Cristalização/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Tamanho da Partícula , Porosidade , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Difração de Raios X/métodos
6.
Appl Microbiol Biotechnol ; 104(23): 10145-10164, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025128

RESUMO

Immobilizarion of PGPR for agricultural applications aims to provide temporary physical protection from stressful environmental conditions and the gradual release of cells for successful root colonization, release the cells gradually. In this work, we immobilized Bradyrhizobium sp. SEMIA6144 or Azospirillum brasilense Az39 cells in 2% alginate beads prepared by ionic gelation process, and then stored up to 12 months at 4 °C. Alginate matrix showed interaction with the immobilized bacteria (FTIR), allowed a constant release of cells, and improved their viability and capability to interact with Arachis hypogaea. Cell number into beads reached 107 CFU.bead-1; however, viability decreased from 4 months of storage for Az39, while it was maintained up to 12 months for SEMIA6144, showing a low metabolic activity measured by the MTT assay. Adhesion of SEMIA6144 and Az39 from new beads to peanut root was 11.5% and 16%, respectively, higher than non-immobilized bacteria. Peanut inoculation with 12 months storage SEMIA6144 beads significantly increased root length and biomass at 30 days of growth, and under restrictive water condition (RWC), nodulation and total plant N content increased compared with liquid inoculation. Our results demonstrate that immobilization of SEMIA6144 and Az39 in alginate matrix is a potential alternative to enhance peanut growth even under RWC. KEY POINTS: • Alginate encapsulation enhances viability of SEMIA6144 or Az39 under storage at 4 °C for 1 year. • Alginate beads 2% ensure the gradual release of the microorganisms. • Cells from beads stored for long periods present chemotaxis and adhesion to peanut root. • Peanut inoculation with 1-year-old SEMIA6144 beads improves nodulation and growth in RWC.


Assuntos
Azospirillum brasilense , Bradyrhizobium , Alginatos , Arachis , Sobrevivência Celular
7.
Macromol Rapid Commun ; 39(20): e1800144, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29806085

RESUMO

This study reports an effective method for controlling substance-release sites of hydrogel. Glycidyl methacrylate, which contains two functional groups, namely, double-bond acrylate and epoxide, is photografted on a hydrogel surface through hydrogen abstraction photopolymerization due to the existence of a hydrogen donor, such as an amine, in the hydrogel matrix. The remaining epoxide group crosslinks the polymer chain of polyglycidyl methacrylate. Substance release of hydrogel is changed due to the altered surface texture of hydrogel. Rate and site-controlled substance release are achieved by controlling the thickness and site of surface grafting and the extent of epoxide ring opening. This study may provide a novel method for achieving hydrogel function or modified performance of other biomaterials to meet biological activity requirements.


Assuntos
Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Materiais Biocompatíveis , Reagentes de Ligações Cruzadas/síntese química , Liberação Controlada de Fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Luz , Polimerização/efeitos da radiação , Polímeros/síntese química , Propriedades de Superfície
8.
Biomed Eng Online ; 17(1): 88, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925387

RESUMO

BACKGROUND: Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. METHODS: TiO2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. RESULTS: The results showed that the diameter of TiO2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO2 nanotubes loaded with the concentration of 20 µg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. CONCLUSIONS: The results suggested that the surface functionalization of TiO2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Minociclina/química , Nanotubos/química , Células de Schwann/efeitos dos fármacos , Titânio/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células de Schwann/citologia , Células de Schwann/metabolismo , Propriedades de Superfície
9.
J Sci Food Agric ; 98(7): 2617-2623, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29064580

RESUMO

BACKGROUND: This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha ß-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B12 (VB12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). RESULTS: The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. CONCLUSION: The Auricularia polytricha ß-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB12 . © 2017 Society of Chemical Industry.


Assuntos
Basidiomycota/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Extratos Vegetais/química , Vitamina B 12/química , beta-Glucanas/química , Sistemas de Liberação de Medicamentos/instrumentação , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Vitamina B 12/farmacologia
10.
Food Hydrocoll ; 69: 450-458, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28775392

RESUMO

Sodium (salt) was encapsulated within the inner water phase of w1/o/w2 food emulsions externally stabilised by starch particles with the ultimate aim of enhancing saltiness perception. The physical properties of the starch particles were modified by octenyl succinic anhydride (OSA) treatment (0-3%) to vary the degree of hydrophobicity of the emulsifying starch. During oral processing native salivary amylase hydrolysed the starch and destabilised the o/w emulsion releasing the inner w/o phase and subsequently sodium into the oral cavity, resulting in a salty taste. Whilst increasing OSA treatment levels increased the stability of the emulsion, intermediate or low levels of starch modification resulted in enhanced saltiness. It is therefore proposed that 1.5% OSA modified starch is optimal for sodium delivery and 2% OSA modified starch is optimal for sodium delivery in systems that require greater process stability. It is also shown that sodium release was further enhanced by oral processing and was positively correlated with native amylase activity. The results demonstrate a promising new approach for the reduction of salt or sugar in emulsion based foods.

11.
Drug Dev Ind Pharm ; 43(10): 1619-1625, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28489426

RESUMO

Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator which is orally used for treatment of osteoporosis and prevention of breast cancer. The drug has low aqueous solubility and bioavailability. The aim of the present study is to formulate and characterize oil-in-water microemulsion systems for oral delivery of RLX. To enhance the drug aqueous solubility, microemulsion based on sesame oil was prepared. Sesame oil and Tween 80 were selected as the drug solvent oil and surfactant, respectively. In the first and second formulations, Edible glycerin and Span 80 were applied as co-surfactant, respectively. Pseudo-ternary phase diagrams showed that the best surfactant/co-surfactant ratios in the first and second formulations were 4:1 and 9:1, respectively. The particle size of all free drug-loaded and drug loaded samples were in the range of 31.25 ± 0.3 nm and 60.9 ± 0.1 nm, respectively. Electrical conductivity coefficient and refractive index of all microemulsion samples confirmed the formation of oil-in-water type of microemulsion. In vitro drug release profile showed that after 24 hours, 46% and 63% of the drug released through the first formulation in 0.1% (w/v) Tween 80 in distilled water as a release medium and phosphate buffer solution (PBS) at pH = 5.5, respectively. These values were changed to 57% and 98% for the second formulation. Results confirmed that the proposed microemulsion system containing RLX could improve and control the drug release profile in comparison to conventional dosage form.


Assuntos
Emulsões/química , Glicerol/química , Polissorbatos/química , Cloridrato de Raloxifeno/química , Tensoativos/química , Disponibilidade Biológica , Química Farmacêutica , Liberação Controlada de Fármacos , Cloridrato de Raloxifeno/antagonistas & inibidores , Solubilidade
12.
Pharm Dev Technol ; 22(2): 148-155, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26400477

RESUMO

OBJECTIVE: The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). MATERIAL AND METHODS: In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. RESULTS: In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged Tmax and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. CONCLUSION: It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Preparações de Ação Retardada/química , Diterpenos do Tipo Caurano/administração & dosagem , Diterpenos do Tipo Caurano/sangue , Animais , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Diterpenos do Tipo Caurano/química , Cães , Emulsões/química , Excipientes/química , Osmose , Transição de Fase , Solubilidade , Comprimidos
13.
J Anaesthesiol Clin Pharmacol ; 33(2): 157-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781439

RESUMO

A paradigm shift in drug delivery systems have been noted recently. The focus nowadays is to obtain maximum benefit with lower side effects. It is a monetary burden to launch newer molecules hence the industry is concentrating on improving the efficacy of existing molecules. Thus controlled release, target controlled infusion and closed loop infusion have entered the scene. Applying pharmacokinetic principles, instead of mathematically calculating drug dose could improve safety and maintain steady drug levels in the body. When computers are applied to an efficient operating system, it will only magnify the efficiency. Most of these technologies which were earlier limited to research only have entered clinical practice. This has made it mandatory for the practicing clinician to familiarize themselves with these technologies. Our focus in this review has been to discuss newer drug delivery systems available for anesthesiology practice.

14.
Pharm Res ; 33(1): 137-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26286185

RESUMO

PURPOSE: Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anticancer drugs have poor water solubility leading to low bioavailability. METHODS: Controlled released spray dried matrix system of Gefitinib with hydroxypropyl ß-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. RESULTS: In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. CONCLUSION: Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Quinazolinas/farmacocinética , Quinazolinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Área Sob a Curva , Disponibilidade Biológica , Células CACO-2 , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Química Farmacêutica , Excipientes , Gefitinibe , Humanos , Camundongos Nus , Proteômica , Quinazolinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Neoplasias Cutâneas/genética , Solubilidade , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Food Sci Technol ; 53(1): 293-303, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26787949

RESUMO

Most of the health benefits of fish oil can be attributed to the presence of omega-3 fatty acids like Docosahexenoic acid (DHA) and Eicosapentaenoic acid (EPA). There are few dietary sources of EPA and DHA other than oily fish. EPA and DHA have great potential effect on human health. In this research, Supercritical carbon dioxide (scCO2) extracted mackerel oil was reacted by enzyme at different systems to improve the EPA and DHA. Different types of immobilize enzyme TL-IM, RM-IM, Novozyme 435 were assessed for improving PUFAs. Best result was found at non-pressurized system using TL-IM. Reacted oil particle were obtained with polyethylene glycol by gas saturated solution process (PGSS). Different parameters like temperature, pressure, agitation speed and nozzle size effect on particle formulation were observed. SEM and PSA analysis showed, small size non spherical particles were obtained. It was found that after particle formation poly unsaturated fatty acids (PUFAs) were present in particle as same in oil. PUFAs release from particle was almost linear against constant time duration. Oil quality in particle not change significantly, in this contrast this study will be helpful for food and pharmaceutical industry to provide high EPA and DHA containing powder.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6459-6505, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38700795

RESUMO

It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Animais , Feminino , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
17.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337303

RESUMO

Recent focus on cellulose nanomaterials, particularly biodegradable and biocompatible cellulose nanocrystals (CNCs), has prompted their use as emulsion stabilizers. CNCs, when combined with salt, demonstrate enhanced emulsion stabilization. This study explored three emulsion stabilizers: Tween 80, soybean CNCs with salt (salted CNCs), and a combination of salted CNCs with Tween 80. Soybean CNCs, derived from soybean stover, were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Antifungal testing against Aspergillus flavus revealed increased bioactivity in all lemongrass essential oil (EO)-loaded emulsions compared to pure essential oil. In addition, all three emulsions exhibited a slight reduction in antifungal activity after 30 days of room temperature storage. The release experiment revealed that the EO-loaded nanoemulsion exhibited a slow-release profile. The nanoemulsion stabilized by salted CNCs and Tween 80 exhibited significantly lower release rates when compared to the nanoemulsion stabilized solely by Tween 80, attributed to the gel network formed by salted CNCs. The findings of this study highlight the efficacy of cellulose nanocrystals procured from soybean byproducts in conjunction with synthetic surfactants to create nanoencapsulated essential oils, resulting in improved antimicrobial efficacy and the achievement of sustained release properties.

18.
Curr Drug Deliv ; 21(11): 1497-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38251691

RESUMO

Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.


Assuntos
Gases em Plasma , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Gases em Plasma/uso terapêutico , Humanos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sistemas de Liberação de Medicamentos , Nanopartículas/química
19.
Food Chem ; 452: 139588, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754168

RESUMO

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.


Assuntos
Alginatos , Preparações de Ação Retardada , Microgéis , Proteínas de Soja , Alginatos/química , Proteínas de Soja/química , Preparações de Ação Retardada/química , Microgéis/química , Concentração de Íons de Hidrogênio , beta Caroteno/química , Cátions Bivalentes/química
20.
Int J Biol Macromol ; 265(Pt 2): 131098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521314

RESUMO

This work deals with assessing the performance of lignin nanoparticles (LNPs) in solving the problem of using salicylic acid as an agrochemical compound, via controlling its release. LNPs, obtained from black liquor, have been used to develop new delivery systems. Gels from chelating of LNPs with chitosan or chitosan nanoparticles (Cs-NPs) in presence or absence of cationic starch are investigated to achieve this essential aim. The nanoparticles are examined by TEM, ATR-FTIR, and XRD techniques. Based on measurements of swelling, encapsulation, release profile, release kinetic modeling of salicylic acid (SA), infrared spectroscopy, thermo-gravimetric analysis and scanning electron microscope the behavior of the investigated nanocomposite gels is assessed. The results show that the SA release profile of Cs-NPs and its nanocomposite with LNPs in phosphate-buffered saline (PBS) (7.4) (51.5-69.4 %) is higher than that of the mixture of water and ethanol (34.9-50.4 %). The release profile in PBS (7.4) demonstrates a trend of prolonged SA release over a 48-hour period. Best control of the SA-release can be achieved by CsNPs-LNPs nanocomposite. Comparing the results with previous literature demonstrates the promising characteristics of these examined gel nanocomposites. The release of SA from nanocomposites is regulated by a diffusion mechanism and follows the Ritger-Peppas and Higuchi models for kinetic release.


Assuntos
Quitosana , Nanopartículas , Ácido Salicílico , Quitosana/química , Lignina , Nanopartículas/química , Géis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa