Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Curr Allergy Asthma Rep ; 24(7): 395-406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878249

RESUMO

PURPOSE OF REVIEW: This review investigates occupational inhalation hazards associated with biologically derived airborne particles (bioaerosols) generated in indoor cannabis cultivation and manufacturing facilities. RECENT FINDINGS: Indoor cannabis production is growing across the US as are recent reports of respiratory diseases among cannabis workers, including occupational asthma morbidity and mortality. More information is needed to understand how bioaerosol exposure in cannabis facilities impacts worker health and occupational disease risk. Preliminary studies demonstrate a significant fraction of airborne particles in cannabis facilities are comprised of fungal spores, bacteria, and plant material, which may also contain hazardous microbial metabolites and allergens. These bioaerosols may pose pathogenic, allergenic, toxigenic, and pro-inflammatory risks to workers. The absence of multi-level, holistic bioaerosol research in cannabis work environments necessitates further characterization of the potential respiratory hazards and effective risk prevention methods to safeguard occupational health as the cannabis industry continues to expand across the US and beyond.


Assuntos
Aerossóis , Cannabis , Exposição Ocupacional , Humanos , Cannabis/efeitos adversos , Exposição Ocupacional/efeitos adversos , Aerossóis/efeitos adversos , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise
2.
J Environ Manage ; 353: 120208, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301481

RESUMO

Aquaponics is an integrated food production system that intensively produces a diverse array of seafood and specialty crops in one closed-loop system, which is a potential solution to global challenges of food security. While current aquaponics systems are commonly operated with freshwater, marine aquaponics is an emerging opportunity to grow saltwater animals and plants. Although marine aquaponics can reduce the dependence on freshwater for food production, its environmental sustainability has not been systematically studied. This paper presents the first life cycle assessment (LCA) on a marine aquaponic production system growing shrimp and three halophytes. The system assessed covered from shrimp larvae nursery to grow-out. The effects of salinity, carbon/nitrogen (C/N) ratio and shrimp-to-plant stocking density ratio of aquaponics on its midpoint and endpoint environmental impacts were evaluated using a functional unit based on the economic value of the four products. Electricity use for aquaponic operation was the environmental hotspot, contributing ∼90 % to all the midpoint impacts. The system produced higher environmental impacts when operated at higher salinity, but lower C/N ratio and stocking density. Replacing fossil fuel with wind power for electricity generation can decrease the environmental impacts by 95-99 %. Variation in the shrimp price can change the impacts by up to 62 %. This study provides a useful tool to help marine aquaponic farmers improve their production from an environmental perspective, and can serve as groundwork for further assessing more marine aquaponic systems with different animal-plant combinations.


Assuntos
Aquicultura , Produtos Agrícolas , Animais , Hidroponia , Nitrogênio , Alimentos Marinhos , Estágios do Ciclo de Vida
3.
BMC Plant Biol ; 23(1): 581, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985970

RESUMO

BACKGROUND: Choy Sum (Brassica rapa ssp. chinensis var. parachinensis), grown in a controlled environment, is vulnerable to changes in indoor light quality and displays distinct photo-morphogenesis responses. The scarcity of Choy Sum germplasm for indoor cultivation necessitates the development of new cultivars. Hence, this study attempted to develop mutants through chemical mutagenesis and select low-light-tolerant mutants by using abiotic stress tolerance indices. RESULTS: A mutant population of Choy Sum created using 1.5% ethyl methane sulfonate (EMS) at 4 h was manually pollinated to obtain the M2 generation. 154 mutants with reduced hypocotyl length were initially isolated from 3600 M2 seedlings screened under low light (R: FR = 0.5). Five mutants that showed reduced plant height at mature stages were selected and screened directly for shade tolerance in the M3 generation. Principal component analysis based on phenotypic data distinguished the M3 mutants from the wild type. Abiotic stress tolerance indices such as relative stress index (RSI), stress tolerance index (STI), geometric mean productivity (GMP), yield stability index (YSI), and stress resistance index (SRI) showed significant (P < 0.05), and positive associations with leaf yield under shade. M3-12-2 was selected as a shade-tolerant mutant based on high values of STI, YSI, and SRI with low values for tolerance (TOL) and stress susceptibility index (SSI). CONCLUSIONS: The results demonstrate that mutation breeding can be used to create dominant mutants in Choy Sum. Furthermore, we show that screening for low light and selection based on abiotic tolerance indices allowed the identification of mutants with high resilience under shade. This method should apply to developing new cultivars in other crop plants that can be suitable for controlled environments with stable yield performance.


Assuntos
Brassica , Brassica/genética , Metanossulfonato de Etila , Melhoramento Vegetal , Mutagênese , Estresse Fisiológico/genética
4.
Sensors (Basel) ; 23(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765728

RESUMO

Indoor agriculture is emerging as a promising approach for increasing the efficiency and sustainability of agri-food production processes. It is currently evolving from a small-scale horticultural practice to a large-scale industry as a response to the increasing demand. This led to the appearance of plant factories where agri-food production is automated and continuous and the plant environment is fully controlled. While plant factories improve the productivity and sustainability of the process, they suffer from high energy consumption and the difficulty of providing the ideal environment for plants. As a small step to address these limitations, in this article we propose to use internet of things (IoT) technologies and automatic control algorithms to construct an energy-efficient remote control architecture for grow lights monitoring in indoor farming. The proposed architecture consists of using a master-slave device configuration in which the slave devices are used to control the local light conditions in growth chambers while the master device is used to monitor the plant factory through wireless communication with the slave devices. The devices all together make a 6LoWPAN network in which the RPL protocol is used to manage data transfer. This allows for the precise and centralized control of the growth conditions and the real-time monitoring of plants. The proposed control architecture can be associated with a decision support system to improve yields and quality at low costs. The developed method is evaluated in emulation software (Contiki-NG v4.7),its scalability to the case of large-scale production facilities is tested, and the obtained results are presented and discussed. The proposed approach is promising in dealing with control, cost, and scalability issues and can contribute to making smart indoor agriculture more effective and sustainable.

5.
J Environ Manage ; 277: 111444, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059323

RESUMO

Previous research has demonstrated that composts (COM) and woody residues from nature management (MR) are potential peat replacers for growing media, but their compositions are highly variable. Our goal is to make growing media more sustainable by optimizing the selection of local and sustainable alternatives for peat. Different batches of COM and MR were incubated to assess the microbial activity based on (1) the N drawdown risk, (2) the C mineralization and (3) the inoculation efficiency of a commercially available biocontrol fungus. The various batches were characterized based on biochemical, chemical (pH, available and total nutrients) and microbiological biomass analysis. COM and MR were scored based on chemical or stability characteristics to assess their suitability to replace peat, lime and fertilizers in growing media. This score allowed for a clear differentiation between the materials; MR received higher scores on average than COM. Five composts were further tested for the effect of storage after blending with an acidic MR, acidification with elemental S, or removal of the finer fraction. One batch of chopped soft rush was acidified with elemental S. Blending and acidification were the most effective treatments as they resulted in a clear increase of the suitability score.


Assuntos
Compostagem , Fertilizantes , Concentração de Íons de Hidrogênio , Solo , Madeira
6.
Sci Hortic ; 279: 109896, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731973

RESUMO

There are many different types of systems used to grow food that are distinguished by ideology or the technology used. It is often difficult to directly compare yield and quality in different growth systems due to the complicated interactions between genotype, physiology and environment. Many published comparisons do not identify and acknowledge confounding factors. However, there is urgency to undertake controlled comparisons to identify the most efficient and effective food production systems, because the world faces considerable challenges to food supply with population rise, ongoing environmental degradation and the threat of climatic change. Here we compared soil with two hydroponic growth systems, drip irrigation and deep-water culture (DWC). It is often claimed that such systems differ in water use, yield and crop quality; however, such comparisons are often confounded by assessing plant and system parameters in different growth environments or where factors that are difficult to standardise between systems, such as nutrient status, are not controlled. We grew tomato (Solanum lycopersicum L.) in the three growth systems in two replicated experiments, in either a polytunnel or glasshouse. We controlled and monitored water use and nutrient levels across all systems as different fertilizer applications can influence the nutritional values of produce. Plants in the two hydroponic systems transpired less water and were more water-efficient with a lower product water use than plants grown in soil. Fruit yield was similar and total soluble solids and sugar levels were not significantly different between the three growing systems. However, levels of lycopene and ß-carotene were either similar or significantly higher in DWC compared to growth systems using soil or drip irrigation. Our results identify hydroponic systems as more water use efficient with DWC also capable of producing higher quality produce.

7.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486394

RESUMO

Proximal sensors in controlled environment agriculture (CEA) are used to monitor plant growth, yield, and water consumption with non-destructive technologies. Rapid and continuous monitoring of environmental and crop parameters may be used to develop mathematical models to predict crop response to microclimatic changes. Here, we applied the energy cascade model (MEC) on green- and red-leaf butterhead lettuce (Lactuca sativa L. var. capitata). We tooled up the model to describe the changing leaf functional efficiency during the growing period. We validated the model on an independent dataset with two different vapor pressure deficit (VPD) levels, corresponding to nominal (low VPD) and off-nominal (high VPD) conditions. Under low VPD, the modified model accurately predicted the transpiration rate (RMSE = 0.10 Lm-2), edible biomass (RMSE = 6.87 g m-2), net-photosynthesis (rBIAS = 34%), and stomatal conductance (rBIAS = 39%). Under high VPD, the model overestimated photosynthesis and stomatal conductance (rBIAS = 76-68%). This inconsistency is likely due to the empirical nature of the original model, which was designed for nominal conditions. Here, applications of the modified model are discussed, and possible improvements are suggested based on plant morpho-physiological changes occurring in sub-optimal scenarios.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Teóricos , Pressão de Vapor , Água , Ambiente Controlado , Lactuca/crescimento & desenvolvimento , Microclima
8.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761748

RESUMO

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Assuntos
Luz , Fotossíntese , Solanum lycopersicum , Fotossíntese/efeitos da radiação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos da radiação , Lactuca/metabolismo
9.
J Food Prot ; 87(3): 100230, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278488

RESUMO

Aquaponic production of fresh produce is a sustainable agricultural method becoming widely adopted, though few studies have investigated potential food safety hazards within commercial systems. A longitudinal study was conducted to isolate and quantify several foodborne pathogens from a commercial, aquaponic farm, and to elucidate their distribution throughout. The survey was conducted over 2 years on a controlled-environment farm containing Nile tilapia (Oreochromis niloticus) and lettuce (Lactuca sativa). Samples (N = 1,047) were collected bimonthly from three identical, independent systems, and included lettuce leaves, roots, fingerlings (7-126 d old), feces from mature fish (>126 d old), water, and sponge swabs collected from the tank interior surface. Most probable number of generic Escherichia coli were determined using IDEXX Colilert Quanti-Tray. Enumeration and enrichment were used to detect Shiga toxin-producing E. coli (STEC), Salmonella enterica, Listeria monocytogenes, Aeromonas spp., Aeromonas hydrophilia, and Pseudomonas aeruginosa. Generic E. coli, STEC, L. monocytogenes, and S. enterica were not detected in collected samples. P. aeruginosa was isolated from water (7/351; 1.99%), swabs (3/351; 0.85%), feces (2/108; 1.85%), and lettuce leaves (2/99; 2.02%). A. hydrophila was isolated from all sample types (623/1047; 59.50%). The incidence of A. hydrophila in water (X2 = 23.234, p < 0.001) and sponge samples (X2 = 21.352, p < 0.001) increased over time.


Assuntos
Aeromonas hydrophila , Escherichia coli , Animais , Estudos Longitudinais , Agricultura/métodos , Água
10.
Plants (Basel) ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337966

RESUMO

Indoor-grown Cannabis sativa is commonly transitioned to a 12 h daily photoperiod to promote flowering. However, our previous research has shown that some indoor-grown cannabis cultivars can initiate strong flowering responses under daily photoperiods longer than 12 h. Since longer photoperiods inherently provide higher daily light integrals (DLIs), they may also increase growth and yield. To test this hypothesis, two THC-dominant cannabis cultivars, 'Incredible Milk' (IM) and 'Gorilla Glue' (GG), were grown to commercial maturity at a canopy level PPFD of 540 µmol·m-2·s-1 from white LEDS under 12 h or 13 h daily photoperiods, resulting in DLIs of 23.8 and 25.7 mol·m-2·d-1, respectively. Both treatments were harvested when the plants in the 12 h treatment reached maturity according to established commercial protocols. There was no delay in flowering initiation time in GG, but flowering initiation in IM was delayed by about 1.5 d under 13 h. Stigma browning and trichome ambering also occurred earlier and progressed faster in the 12 h treatment in both cultivars. The vegetative growth of IM plants in the 13 h treatment was greater and more robust. The inflorescence yields were strikingly higher in the 13 h vs. 12 h treatment, i.e., 1.35 times and 1.50 times higher in IM and GG, respectively, which is 4 to 6 times higher than the relative increase in DLIs. The inflorescence concentrations of major cannabinoids in the 13 h treatment were either higher or not different from the 12 h treatment in both cultivars. These results suggest that there may be substantial commercial benefits for using photoperiods longer than 12 h for increasing inflorescence yields without decreasing cannabinoid concentrations in some cannabis cultivars grown in indoor environments.

11.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588384

RESUMO

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Assuntos
Biomassa , Flores , Mostardeira , Compostos Fitoquímicos , Folhas de Planta , Luz Vermelha , Antocianinas/análise , Flores/química , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Mostardeira/química , Mostardeira/crescimento & desenvolvimento , Mostardeira/efeitos da radiação , Fotossíntese/efeitos da radiação , Compostos Fitoquímicos/química , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
12.
Foods ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998646

RESUMO

This study investigates the effect of continuous blue light (CBL) treatment on quality-related metabolites, focusing on ascorbic acid (AsA) accumulation in hydroponically grown Eruca vesicaria (L.). Plants were subjected to CBL treatment, consisting of 24-h exposure to constant-intensity blue light (48 µmol m-2 s-1) and 12-h exposure to the remaining spectrum (192 µmol m-2 s-1). The activities of key enzymes in AsA biosynthesis and recycling were analyzed, including L-galactono-1,4-lactone dehydrogenase (GalLDh), monodehydroascorbate reductase (MDhAR), dehydroascorbate reductase (DhAR), and ascorbate peroxidase (APX). The results showed a significant increase in AsA accumulation of 65.9% during the "day" and 69.1% during the "night" phases under CBL compared to controls. GalLDh activity increased by 20% during the "day phase" in CBL-treated plants. APX activity also rose significantly under CBL conditions, by 101% during the "day" and 75.6% during the "night". However, this did not affect dehydroascorbic acid levels or the activities of MDhAR and DhAR. These findings highlight the potential of tailored light treatments to enhance the nutraceutical content of horticultural species, offering valuable insights for sustainably improving food quality in controlled-environment agriculture (CEA) systems and understanding the roles of blue light in ascorbic acid biosynthesis.

13.
Food Environ Virol ; 16(2): 261-268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413543

RESUMO

Controlled environment agriculture (CEA), or indoor agriculture, encompasses non-traditional farming methods that occur inside climate-controlled structures (e.g., greenhouses, warehouses, high tunnels) allowing for year-round production of fresh produce such as leaf lettuce. However, recent outbreaks and recalls associated with hydroponically grown lettuce contaminated with human pathogens have raised concerns. Few studies exist on the food safety risks during hydroponic cultivation of leaf lettuce; thus, it is important to identify contributing risk factors and potential mitigation strategies to prevent foodborne transmission via hydroponically grown produce. In this study, the concentration of infectious Tulane virus (TV), a human norovirus surrogate, in hydroponic nutrient solution at 15 °C, 25 °C, 30 °C, and 37 °C was determined over a duration of 21 days to mimic the time from seedling to mature lettuce. The mean log PFU reduction for TV was 0.86, 1.80, 2.87, and ≥ 3.77 log10 at 15 °C, 25 °C, 30 °C, and 37 °C, respectively, at the end of the 21-day period. Similarly, average decimal reduction values (D-values) of TV at 15 °C, 25 °C, 30 °C, and 37 °C were 48.0, 11.3, 8.57, and 7.02 days, respectively. This study aids in the (i) identification of possible food safety risks associated with hydroponic systems specifically related to nutrient solution temperature and (ii) generation of data to perform risk assessments within CEA leaf lettuce operations to inform risk management strategies for the reduction of foodborne outbreaks, fresh produce recalls, and economic losses.


Assuntos
Hidroponia , Lactuca , Temperatura , Lactuca/virologia , Lactuca/crescimento & desenvolvimento , Caliciviridae/crescimento & desenvolvimento , Caliciviridae/fisiologia , Contaminação de Alimentos/análise , Nutrientes/metabolismo , Humanos , Inocuidade dos Alimentos
14.
Int J Food Microbiol ; 411: 110546, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157635

RESUMO

Produce grown under controlled environment agriculture (CEA) is often assumed to have a reduced risk of pathogen contamination due to the low chance of exposure to outdoor contaminant factors. However, the 2021 outbreak and numerous recalls of CEA-grown lettuce and microgreens demonstrate the possibility of pathogen introduction during indoor production when there is a failure in the implementation of food safety management systems. Indoor production of commercial leafy greens, such as lettuce and microgreens, is performed across a range of protective structures from primitive household setups to advanced and partially automatized growing systems. Indoor production systems include hydroponic, aquaponic, and aeroponic configurations. Hydroponic systems such as deep water culture and nutrient film technique comprised of various engineering designs represent the main system types used by growers. Depending on the type of leafy green, the soilless substrate, and system selection, risk of microbial contamination will vary during indoor production. In this literature review, science-based pathogen contamination risks and mitigation strategies for indoor production of microgreens and more mature leafy greens are discussed during both pre-harvest and post-harvest stages of production.


Assuntos
Agricultura , Folhas de Planta , Lactuca , Contaminação de Alimentos/análise
15.
Front Nutr ; 11: 1386988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899321

RESUMO

With the growing global population and climate change, achieving food security is a pressing challenge. Vertical farming has the potential to support local food production and security. As a Total Controlled Environment Agriculture (TCEA) system, vertical farming employs LED lighting which offers opportunities to modulate light spectrum and intensity, and thus can be used to influence plant growth and phytochemical composition, including antioxidants beneficial for human health. In this study, we investigated the effect of four red-to-blue light ratios of LEDs (R:B 1, 2.5, 5 and 9) on the growth and antioxidant components in red amaranth microgreens and red lettuce. Plant growth, total phenols, betalains, anthocyanins, vitamin C and antioxidant capacity (ferric reducing antioxidant power assay) were evaluated. A higher proportion of red light resulted in biometric responses, i.e., stem elongation in red amaranth and longer leaves in red lettuce, while the increase in the blue light fraction led to the upregulation of antioxidative components, especially total phenols, betalains (in red amaranth) and anthocyanins (in red lettuce). The antioxidant capacity of both crops was strongly positively correlated with the levels of these phytochemicals. Optimizing the red-to-blue ratio in LED lighting could be effective in promoting antioxidant-rich crops with potential health benefits for consumers.

17.
Trends Plant Sci ; 29(5): 572-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494370

RESUMO

In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.


Assuntos
Luz , Plantas , Terpenos , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Terpenos/metabolismo
18.
Front Plant Sci ; 15: 1383100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745919

RESUMO

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m-2 s-1 PAR under three different R:B ratios: R:B87.5:12.5 (12.5% blue), R:B75:25 (25% blue), and R:B60:40 (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m-2 s-1; R:B87.5:12.5+FR, R:B75:25+FR, and R:B60:40+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B87.5:12.5 to R:B60:40, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124820, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032229

RESUMO

As demand for food continues to rise, innovative methods are needed to sustainably and efficiently meet the growing pressure on agriculture. Indoor farming and controlled environment agriculture have emerged as promising approaches to address this challenge. However, optimizing fertilizer usage, ensuring homogeneous production, and reducing agro-waste remain substantial challenges in these production systems. One potential solution is the use of optical sensing technology, which can provide real-time data to help growers make informed decisions and enhance their operations. optical sensing can be used to analyze plant tissues, evaluate crop quality and yield, measure nutrients, and assess plant responses to stress. This paper presents a systematic literature review of the current state of using spectral-optical sensors and hyperspectral imaging for indoor farming, following the PRISMA 2020 guidelines. The study surveyed existing studies from 2017 to 2023 to identify gaps in knowledge, provide researchers and farmers with current trends, and offer recommendations and inspirations for possible new research directions. The results of this review will contribute to the development of sustainable and efficient methods of food production.


Assuntos
Agricultura , Análise Espectral , Agricultura/métodos , Análise Espectral/métodos , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Imageamento Hiperespectral/métodos , Fertilizantes/análise , Imagem Óptica/métodos
20.
Front Plant Sci ; 15: 1427471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109059

RESUMO

In modern agriculture, Controlled environment agriculture (CEA) stands out as a contemporary production mode that leverages precise control over environmental conditions such as nutrient, temperature, light, and other factors to achieve efficient and high-quality agricultural production. Numerous studies have demonstrated the efficacy of manipulating these environmental factors in the short period before harvest to enhance crop yield and quality in CEA. This comprehensive review aims to provide insight into various pre-harvest practices employed in CEA, including nutrient deprivation, nutrient supply, manipulation of the light environment, and the application of exogenous hormones, with the objective of improving yield and quality in horticultural crops. Additionally, we propose an intelligent pre-harvest management system to cultivate high-quality horticultural crops. This system integrates sensor technology, data analysis, and intelligent control, enabling the customization of specific pre-harvest strategies based on producers' requirements. The envisioned pre-harvest intelligent system holds the potential to enhance crop quality, increase yield, reduce resource wastage, and offer innovative ideas and technical support for the sustainable development of CEA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa