Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Annu Rev Biochem ; 86: 357-386, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654328

RESUMO

A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.


Assuntos
Proteínas de Bactérias/química , Chloroflexi/enzimologia , Coenzimas/química , Corrinoides/química , Halogênios/química , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Biocatálise , Chloroflexi/química , Chloroflexi/genética , Coenzimas/metabolismo , Corrinoides/metabolismo , Transporte de Elétrons , Metabolismo Energético , Expressão Gênica , Halogênios/metabolismo , Cinética , Modelos Moleculares , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Especificidade por Substrato , Vitamina B 12/química , Vitamina B 12/metabolismo
2.
Mol Microbiol ; 118(3): 191-207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785499

RESUMO

Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.


Assuntos
Etanolamina Amônia-Liase , Salmonella enterica , Trifosfato de Adenosina/metabolismo , Cobamidas/metabolismo , Etanolamina/metabolismo , Etanolamina Amônia-Liase/genética , Etanolamina Amônia-Liase/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhimurium/metabolismo
3.
Hereditas ; 160(1): 25, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248539

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA) is a rare metabolic disorder resulting from functional defects in methylmalonyl-CoA mutase. Mutations in the MMAB gene are responsible for the cblB type of vitamin B12-responsive MMA. RESULTS: This study used Whole-exome sequencing (WES), Sanger sequencing, linkage analysis, and in-silico evaluation of the variants' effect on protein structure and function to confirm their pathogenicity in a 2-day-old neonate presenting an early-onset metabolic crisis and death. WES revealed a homozygous missense variant on chromosome 12, the NM_052845.4 (MMAB):c.557G > A, p.Arg186Gln, in exon 7, a highly conserved and hot spot region for pathogenic variants. After being confirmed by Sanger sequencing, the wild-type and mutant proteins' structure and function were modeled and examined using in-silico bioinformatics tools and compared to the variant NM_052845.4 (MMAB):c.556C > T, p.Arg186Trp, a known pathogenic variant at the same position. Comprehensive bioinformatics analysis showed a significant reduction in the stability of variants and changes in protein-protein and ligand-protein interactions. Interestingly, the variant c.557G > A, p.Arg186Gln depicted more variations in the secondary structure and less binding to the ATP and B12 ligands compared to the c.556C > T, p.Arg186Trp, the known pathogenic variant. CONCLUSION: This study succeeded in expanding the variant spectra of the MMAB, forasmuch as the variant c.557G > A, p.Arg186Gln is suggested as a pathogenic variant and the cause of severe MMA and neonatal death. These results benefit the prenatal diagnosis of MMA in the subsequent pregnancies and carrier screening of the family members. Furthermore, as an auxiliary technique, homology modeling and protein structure and function evaluations could provide geneticists with a more accurate interpretation of variants' pathogenicity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Recém-Nascido , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Mutação , Metilmalonil-CoA Mutase/genética , Éxons
4.
J Bacteriol ; 202(2)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31685533

RESUMO

Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino acid metabolism have been investigated, but its cobamide (vitamin B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent pathways encoded in its genome in addition to a nearly complete cobamide biosynthesis pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant derivatives under cobamide-dependent conditions in vitro Our results show that C. difficile can use a surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis and can use alternative metabolites or enzymes, respectively, to bypass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micromolar or lower concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in the btuFCD loci of different C. difficile strains, which may result in differences in the ability to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile is versatile.IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has been underexplored, although it has seven metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of cobamides and has alternative functions that can bypass some of its cobamide requirements. Furthermore, C. difficile does not synthesize cobamides de novo but produces them when given cobamide precursors. A better understanding of C. difficile cobamide metabolism may lead to new strategies to treat and prevent C. difficile-associated disease.


Assuntos
Clostridioides difficile/metabolismo , Cobamidas/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Ácido Aminolevulínico/metabolismo , Ribonucleotídeo Redutases/metabolismo , Vitamina B 12/metabolismo
5.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481666

RESUMO

Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were-in addition-able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.


Assuntos
Cobalto/metabolismo , Hidroliases/metabolismo , Ferro/metabolismo , Burkholderiaceae/metabolismo , Catálise , Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Methylobacteriaceae/metabolismo , Pseudomonas/metabolismo
6.
J Bacteriol ; 200(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378885

RESUMO

The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B12 In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as cofactors by a cobamide-containing enzyme are provided.IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl- or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Benzimidazóis/metabolismo , Campylobacteraceae/enzimologia , Cobamidas/metabolismo , Oxirredutases/metabolismo , Coenzimas/metabolismo , Cristalização , Estrutura Molecular
7.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188205

RESUMO

The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Perfilação da Expressão Gênica , Metagenômica , Consórcios Microbianos , Vitamina B 12/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Vias Biossintéticas/genética , Chloroflexi/efeitos dos fármacos , Corrinoides/metabolismo , Genoma Bacteriano , Halogenação , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Tricloroetileno/metabolismo , Veillonellaceae/genética , Veillonellaceae/metabolismo , Vitamina B 12/farmacologia
8.
World J Microbiol Biotechnol ; 33(5): 93, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28397170

RESUMO

Cobamides ('complete' corrinoids) are essential for organohalide-respiring bacteria because they act as cofactors of reductive dehalogenases (RDases). RDases are the key enzymes in organohalide respiration, a process relevant for environmental remediation. More than a decade ago, the unusual norpseudo-B12 was identified as cofactor of the tetrachloroethene RDase (PceA) purified from the epsilonproteobacterium Sulfurospirillum multivorans. Since then, the question was raised whether or not the production of the uncommon cobamide is a specific adaptation to the requirements of PceA. Recently, efforts were made to unravel variations in the cobamide biosynthetic pathway, which lead to the production of the structurally unique norpseudo-B12. The acquisition of genomic and proteomic data together with structural analyses of PceA provided insights into norcobamide formation and utilization. By the use of guided biosynthesis, S. multivorans was shown to be an effective cobamide producer capable of generating unusual norcobamides either functional or non-functional as cofactors of PceA. The organism turned out to be a suitable tool for testing the impact of cobamide structure on enzyme function. The results summarized here highlight S. multivorans in particular and the organohalide-respiring bacteria in general as a resource for new discoveries on cobamide diversity and utilization.


Assuntos
Cobamidas/biossíntese , Epsilonproteobacteria/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Cobamidas/química , Epsilonproteobacteria/enzimologia , Estrutura Molecular , Oxirredutases/química
9.
J Biol Inorg Chem ; 21(5-6): 669-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27383231

RESUMO

The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand.


Assuntos
Trifosfato de Adenosina/química , Aldeído Oxirredutases/química , Cobalto/química , Limosilactobacillus reuteri/enzimologia , Vitamina B 12/química , Trifosfato de Adenosina/metabolismo , Aldeído Oxirredutases/metabolismo , Cobalto/metabolismo , Teoria Quântica , Análise Espectral Raman , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648288

RESUMO

Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.


Assuntos
Bactérias , Corrinoides , Filogenia , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Corrinoides/metabolismo , Microbiota , Solo/química , Vitamina B 12/metabolismo , RNA Ribossômico 16S/genética
11.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37577662

RESUMO

Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the soluble coenzyme M methyltransferases (SCMTs) involved in methylotrophic methanogenesis and is widespread in bacteria and archaea. Type 1 MGCs are expressed and regulated in medically, environmentally, and industrially important organisms, making them likely to be physiologically relevant. Enzyme annotation, analysis of genomic context, and biochemical experiments suggests these gene clusters play a role in methyl-sulfur and/or methyl-selenide metabolism in numerous anoxic environments, including the human gut microbiome, potentially impacting sulfur and selenium cycling in diverse, anoxic environments.

12.
J Inorg Biochem ; 243: 112199, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996695

RESUMO

DFT calculations with the well-tested OLYP and B3LYP* exchange-correlation functionals (along with D3 dispersion corrections and all-electron ZORA STO-TZ2P basis sets) and careful use of group theory have led to significant insights into the question of metal- versus ligand-centered redox in Co and Ni B,C-tetradehydrocorrin complexes. For the cationic complexes, both metals occur in their low-spin M(II) forms. In contrast, the charge-neutral states vary for the two metals: while the Co(I) and CoII-TDC•2- state are comparable in energy for cobalt, a low-spin NiII-TDC•2- state is clearly preferred for nickel. The latter behavior stands in sharp contrast to other corrinoids that reportedly stabilize a Ni(I) center.


Assuntos
Cobalto , Níquel , Ligantes , Metais , Oxirredução
13.
mBio ; 14(5): e0158823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823641

RESUMO

IMPORTANCE: In addition to proteins, microbes can use structured RNAs such as riboswitches for the important task of regulating gene expression. Riboswitches control gene expression by changing their structure in response to binding a small molecule and are widespread among bacteria. Here we determine the mechanism of regulation in a riboswitch that responds to corrinoids-a family of coenzymes related to vitamin B12. We report the alternative RNA secondary structures that couple corrinoid sensing with response in a repressing and novel activating corrinoid riboswitch. We then applied this knowledge to flipping the regulatory sign by constructing synthetic riboswitches that activate expression to a higher level than the natural one. In the process, we observed patterns in which sequence, in addition to structure, impacts function in paired RNA regions. The synthetic riboswitches we describe here have potential applications as biosensors.


Assuntos
Riboswitch , Riboswitch/genética , Vitamina B 12 , Bactérias/genética , Coenzimas/metabolismo , Engenharia Genética
14.
Methods Enzymol ; 668: 61-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589202

RESUMO

Cobamides are a family of enzyme cofactors that are required by organisms in all domains of life. Over a dozen cobamides exist in nature although only cobalamin (vitamin B12), the cobamide required by humans, has been studied extensively. Cobamides are exclusively produced by a subset of prokaryotes. Importantly, the bacteria and archaea that synthesize cobamides de novo typically produce a single type of cobamide, and furthermore, organisms that use cobamides are selective for certain cobamides. Therefore, a detailed understanding of the cobamide-dependent metabolism of an organism or microbial community of interest requires experiments performed with a variety of cobamides. A notable challenge is that cobalamin is the only cobamide that is commercially available at present. In this chapter, we describe methods to extract, purify, and quantify various cobamides from bacteria for use in laboratory experiments.


Assuntos
Cobamidas , Vitamina B 12 , Bactérias/metabolismo , Cobamidas/metabolismo , Coenzimas , Humanos , Vitamina B 12/metabolismo , Vitaminas
15.
Methods Enzymol ; 668: 3-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589198

RESUMO

Vitamin B12, cobalamin, belongs to the broader cobamide family whose members are characterized by the presence of a cobalt-containing corrinoid ring. The ability to detect, isolate and characterize cobamides and their biosynthetic intermediates is an important prerequisite when attempting to study the synthesis of this remarkable group of compounds that play diverse roles across the three kingdoms of life. The synthesis of cobamides is restricted to only certain prokaryotes and their structural complexity entails an equally complex synthesis orchestrated through a multi-step biochemical pathway. In this chapter, we have outlined methods that we have found extremely helpful in the characterization of the biochemical pathway, including a plate microbiological assay, a corrinoid affinity extraction method, LCMS characterization and a multigene cloning strategy.


Assuntos
Cobamidas , Vitamina B 12 , Cobamidas/química , Cobamidas/metabolismo , Vitamina B 12/química
16.
Methods Enzymol ; 668: 87-108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589203

RESUMO

Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.


Assuntos
Alquil e Aril Transferases , Corrinoides , Trifosfato de Adenosina , Proteínas de Bactérias/química , Cobalto/química , Cobamidas/química , Corrinoides/química , Vitamina B 12/química
17.
mBio ; 13(5): e0112122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993747

RESUMO

In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.


Assuntos
Riboswitch , Vitamina B 12/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Coenzimas/metabolismo , Vitaminas
18.
Cell Rep ; 37(13): 110164, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965410

RESUMO

The functional and genomic diversity of the human gut microbiome is shaped by horizontal transfer of mobile genetic elements (MGEs). Characterized MGEs can encode genes beneficial for their host's self-defense (e.g., antibiotic resistance) or ability to compete for essential or limited resources (e.g., vitamins). Vitamin B12 and related compounds (corrinoids) are critical nutrients that enable colonization by members of the common gut microbe phylum, the Bacteroidetes. Herein, we identify a distinct class of MGEs in the Bacteroidetes responsible for the mobilization and exchange of the genes required for transport of corrinoids, a group of cyclic tetrapyrrole cofactors including vitamin B12 (btuGBFCD). This class includes two distinct groups of conjugative transposons (CTns) and one group of phage. Conjugative transfer and vitamin B12 transport activity of two of the CTns were confirmed in vitro and in vivo, demonstrating the important role MGEs play in distribution of corrinoid transporters in the Bacteroidetes.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo , Corrinoides/metabolismo , Microbioma Gastrointestinal , Sequências Repetitivas Dispersas , Proteínas de Membrana Transportadoras/metabolismo , Vitamina B 12/metabolismo , Animais , Proteínas de Bactérias/genética , Bacteroidetes/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo Vitamínico B/metabolismo
19.
FEBS J ; 287(22): 4971-4981, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160390

RESUMO

Corrinoid-dependent enzyme systems rely on the super-reduced state of the protein-bound corrinoid cofactor to be functional, for example, in methyl transfer reactions. Due to the low redox potential of the [CoII ]/[CoI ] couple, autoxidation of the corrinoid cofactor occurs and leads to the formation of the inactive [CoII ]-state. For the reactivation, which is an energy-demanding process, electrons have to be transferred from a physiological donor to the corrinoid cofactor by the help of a reductive activator protein. In this study, we identified reduced flavodoxin as electron donor for the ATP-dependent reduction of protein-bound corrinoid cofactors of bacterial O-demethylase enzyme systems. Reduced flavodoxin was generated enzymatically using pyruvate:ferredoxin/flavodoxin oxidoreductase rather than hydrogenase. Two of the four flavodoxins identified in Acetobacterium dehalogenans and Desulfitobacterium hafniense DCB-2 were functional in supplying electrons for corrinoid reduction. They exhibited a midpoint potential of about -400 mV (ESHE , pH 7.5) for the semiquinone/hydroquinone transition. Reduced flavodoxin could be replaced by reduced clostridial ferredoxin. It was shown that the low-potential electrons of reduced flavodoxin are first transferred to the iron-sulfur cluster of the reductive activator and finally to the protein-bound corrinoid cofactor. This study further highlights the importance of reduced flavodoxin, which allows maintaining a variety of enzymatic reaction cycles by delivering low-potential electrons.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Corrinoides/metabolismo , Elétrons , Flavodoxina/metabolismo , Hidroquinonas/metabolismo , Oxirredutases/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas de Bactérias/genética , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Flavodoxina/química , Hidroquinonas/química , Oxirredução , Oxirredutases/genética , Espectrofotometria
20.
FEMS Microbiol Lett ; 367(17)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840570

RESUMO

In microbial corrinoid-dependent methyltransferase systems, adventitious Co(I)-corrinoid oxidation halts catalysis and necessitates repair by ATP-dependent reductive activases. RamA, an activase with a C-terminal ferredoxin domain with two [4Fe-4S] clusters from methanogenic archaea, has been far less studied than the bacterial activases bearing an N-terminal ferredoxin domain with one [2Fe-2S] cluster. These differences suggest RamA might prove to have other distinctive characteristics. Here, we examine RamA kinetics and the stoichiometry of the corrinoid protein:RamA complex. Like bacterial activases, K+ stimulates RamA. Potassium stimulation had been questioned due to differences in the primary structure of bacterial and methanogen activases. Unlike one bacterial activase, ATP is not inhibitory allowing the first determination of apparent kinetic parameters for any corrinoid activase. Unlike bacterial activases, a single RamA monomer complexes a single corrinoid protein monomer. Alanine replacement of a RamA serine residue corresponding to the serine of one bacterial activase which ligates the corrinoid cobalt during complex formation led to only moderate changes in the kinetics of RamA. These results reveal new differences in the two types of corrinoid activases, and provide direct evidence for the proposal that corrinoid activases act as catalytic monomers, unlike other enzymes that couple ATP hydrolysis to difficult reductions.


Assuntos
Proteínas Arqueais/metabolismo , Methanosarcina barkeri/enzimologia , Ativador de Plasminogênio Tecidual/metabolismo , Proteínas Arqueais/genética , Ativação Enzimática/efeitos dos fármacos , Cinética , Methanosarcina barkeri/efeitos dos fármacos , Potássio/farmacologia , Ativador de Plasminogênio Tecidual/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa