RESUMO
In this paper, a preparation method of superhydrophobic composites of oxidized multi-walled carbon nanotubes modified by stearic acid (SA) is proposed. Hydroxylated multi-walled carbon nanotubes (HMWCNTs) were obtained by oxidizing multi-walled carbon nanotubes with potassium dichromate to give them hydroxyl groups on the surface. Subsequently, the carboxyl group in the SA molecule was esterified with the hydroxyl group on the HMWCNTs. SA molecules were grafted onto the surface of multi-walled carbon nanotubes. SA modified oxidized multi-walled carbon nanotubes (SMWCNT) superhydrophobic composites were obtained. The results show that the water contact angle (WCA) of superhydrophobic composites can reach up to 174°. At the same time, the modified nanocomposites have good anti-icing and corrosion resistance. After low temperature delayed freezing test, the freezing extension time of the nanocomposite film is 30 times that of the smooth surface. Under strong acid and alkali conditions, the superhydrophobic nanocomposites still maintain good superhydrophobicity. The nanocomposites may have potential applications in the preparation of large-scale superhydrophobic coatings.
RESUMO
Concrete exposed to the tidal zone of the Yellow Sea and bearing Crassostrea gigas (CG) with differing areal coverages was investigated for evidence of biologically induced corrosion prevention. The experimental results indicated that both the chloride ion profile and the neutralization depth of the concrete decreased with increasing CG coverage. Moreover, the water absorption rate and the chloride ion permeability of concrete with the original surface intact also declined with increasing degrees of CG coverage. However, the water absorption rates of three concrete samples with 2 mm of the surface layer removed were similar, as was their chloride ion permeability. Mercury intrusion porosimetry tests indicated that CG significantly reduced the pore structure of the concrete surface layer. SEM observation revealed that the CG cementation membrane and left valve were tightly glued to the concrete surface and had a dense structure. Concrete durability indices showed that high CG coverage greatly improved concrete durability.
Assuntos
Materiais de Construção , Crassostrea , Animais , Cloretos/química , Força Compressiva , Teste de Materiais , Permeabilidade , Água do Mar , ÁguaRESUMO
Anticorrosive coatings prepared by sol-gel derived approaches have become an emergent research area in the field of corrosion prevention materials. Furthermore, enhanced coating thickness can greatly improve the barrier effect of the sol-gel coatings, thus influencing their service life in industrial applications. Here, we propose the preparation of a two-layer coating system using a low-cost sol-gel derived method. The coating structure was composed of first an underlying layer incorporated with silica and titania powder as filler and pigment materials, and a second translucent topcoat containing a colloidal silica sol-gel matrix crosslinked by methyltrimethoxysilane (MTMS). This coating system was applied on Q235 carbon steel substrate by a two-step spray deposition method, resulting in an enhanced coating thickness of around 35 µm. The physical and morphological properties of the coatings were characterized using multiple techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The anticorrosion performance of the sol-gel coatings was studied by a salt spray test, outdoor exposure test and electrochemical impedance spectroscopy (EIS). Results revealed that this two-layer coating system exhibited excellent physical and anticorrosion properties, and that the topcoat played a crucial role in maintaining the barrier effect and preventing water leakage.