Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 225: 117513, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130271

RESUMO

While there is a profusion of functional investigations involving the superior temporal sulcus (STS), our knowledge of the anatomy of this sulcus is still limited by a large individual variability. In particular, an accurate characterization of the "plis de passage" (PPs), annectant gyri inside the fold, is lacking to explain this variability. Performed on 90 subjects of the HCP database, our study revealed that PPs constitute landmarks that can be identified from the geometry of the STS walls. They were found associated with a specific U-shape white-matter connectivity between the two banks of the sulcus, the amount of connectivity being related to the depth of the PPs. These findings raise new hypotheses regarding the spatial organization of PPs, the relation between cortical anatomy and structural connectivity, as well as the possible role of PPs in the regional functional organization.


Assuntos
Lobo Temporal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Lobo Temporal/anatomia & histologia , Substância Branca/anatomia & histologia
2.
Br J Psychiatry ; 218(2): 104-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32792019

RESUMO

BACKGROUND: Schizophrenia is a highly heritable disorder with undetermined neurobiological causes. Understanding the impact on brain anatomy of carrying genetic risk for the disorder will contribute to uncovering its neurobiological underpinnings. AIMS: To examine the effect of rare copy number variants (CNVs) associated with schizophrenia on brain cortical anatomy in a sample of unaffected participants from the UK Biobank. METHOD: We used regression analyses to compare cortical thickness and surface area (total and across gyri) between 120 unaffected carriers of rare CNVs associated with schizophrenia and 16 670 participants without any pathogenic CNV. A measure of cortical thickness and surface area covariance across gyri was also compared between groups. RESULTS: Carrier status was associated with reduced surface area (ß = -0.020 mm2, P < 0.001) and less robustly with increased cortical thickness (ß = 0.015 mm, P = 0.035), and with increased covariance in thickness (carriers z = 0.31 v. non-carriers z = 0.22, P < 0.0005). Associations were mainly present in frontal and parietal areas and driven by a limited number of rare risk alleles included in our analyses (mainly 15q11.2 deletion for surface area and 16p13.11 duplication for thickness covariance). CONCLUSIONS: Results for surface area conformed with previous clinical findings, supporting surface area reductions as an indicator of genetic liability for schizophrenia. Results for cortical thickness, though, argued against its validity as a potential risk marker. Increased structural thickness covariance across gyri also appears related to risk for schizophrenia. The heterogeneity found across the effects of rare risk alleles suggests potential different neurobiological gateways into schizophrenia's phenotype.


Assuntos
Esquizofrenia , Bancos de Espécimes Biológicos , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Genômica , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Reino Unido
3.
Neuroscience ; 337: 143-152, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27600947

RESUMO

Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD.


Assuntos
Transtorno da Personalidade Antissocial/patologia , Córtex Cerebral/patologia , Comportamento Impulsivo/fisiologia , Adolescente , Adulto , Transtorno da Personalidade Antissocial/fisiopatologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
4.
Brain Behav ; 6(4): e00457, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27066310

RESUMO

INTRODUCTION: This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. METHODS: One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. RESULTS: Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. CONCLUSION: This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.


Assuntos
Desenvolvimento do Adolescente , Gânglios da Base , Cerebelo , Córtex Cerebral , Desenvolvimento Infantil , Hipocampo , Tálamo , Adolescente , Fatores Etários , Gânglios da Base/anatomia & histologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/crescimento & desenvolvimento , Cerebelo/anatomia & histologia , Cerebelo/diagnóstico por imagem , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento
5.
Neuroimage Clin ; 8: 170-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106541

RESUMO

Autism Spectrum Disorder (ASD) is a clinically diagnosed, heterogeneous, neurodevelopmental condition, whose underlying causes have yet to be fully determined. A variety of studies have investigated either cortical, subcortical, or cerebellar anatomy in ASD, but none have conducted a complete examination of all neuroanatomical parameters on a single, large cohort. The current study provides a comprehensive examination of brain development of children with ASD between the ages of 4 and 18 years who are carefully matched for age and sex with typically developing controls at a ratio of one-to-two. Two hundred and ten magnetic resonance images were examined from 138 Control (116 males and 22 females) and 72 participants with ASD (61 males and 11 females). Cortical segmentation into 78 brain-regions and 81,924 vertices was conducted with CIVET which facilitated a region-of-interest- (ROI-) and vertex-based analysis, respectively. Volumes for the cerebellum, hippocampus, striatum, pallidum, and thalamus and many associated subregions were derived using the MAGeT Brain algorithm. The study reveals cortical, subcortical and cerebellar differences between ASD and Control group participants. Diagnosis, diagnosis-by-age, and diagnosis-by-sex interaction effects were found to significantly impact total brain volume but not total surface area or mean cortical thickness of the ASD participants. Localized (vertex-based) analysis of cortical thickness revealed no significant group differences, even when age, age-range, and sex were used as covariates. Nonetheless, the region-based cortical thickness analysis did reveal regional changes in the left orbitofrontal cortex and left posterior cingulate gyrus, both of which showed reduced age-related cortical thinning in ASD. Our finding of region-based differences without significant vertex-based results likely indicates non-focal effects spanning the entirety of these regions. The hippocampi, thalamus, and globus pallidus, were smaller in volume relative to total cerebrum in the ASD participants. Various sub-structures showed an interaction of diagnosis-by-age, diagnosis-by-sex, and diagnosis-by-age-range, in the case where age was divided into childhood (age < 12) and adolescence (12 < age < 18). This is the most comprehensive imaging-based neuro-anatomical pediatric and adolescent ASD study to date. These data highlight the neurodevelopmental differences between typically developing children and those with ASD, and support aspects of the hypothesis of abnormal neuro-developmental trajectory of the brain in ASD.


Assuntos
Transtorno do Espectro Autista/patologia , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Globo Pálido/crescimento & desenvolvimento , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Tálamo/crescimento & desenvolvimento , Adolescente , Cerebelo/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Globo Pálido/patologia , Humanos , Masculino , Tálamo/patologia
6.
Front Neuroanat ; 8: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904304

RESUMO

In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation - bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

7.
Hear Res ; 307: 29-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23938208

RESUMO

We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median loci for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location. This article is part of a Special Issue entitled Human Auditory Neuroimaging.


Assuntos
Estimulação Acústica , Atenção , Córtex Auditivo/fisiologia , Percepção Auditiva , Mapeamento Encefálico/métodos , Ondas Encefálicas , Potenciais Evocados Auditivos , Imageamento por Ressonância Magnética , Córtex Auditivo/anatomia & histologia , Vias Auditivas/fisiologia , Humanos , Percepção da Altura Sonora , Localização de Som , Acústica da Fala , Percepção da Fala , Qualidade da Voz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa