Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
FASEB J ; 38(2): e23411, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243766

RESUMO

Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Audição , Fenótipo
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38220577

RESUMO

Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória Espacial , Cognição
3.
Hum Brain Mapp ; 44(3): 1158-1172, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36419365

RESUMO

Previous electro- or magnetoencephalography (Electro/Magneto EncephaloGraphic; E/MEG) studies using a correlative approach have shown that ß (13-30 Hz) oscillations emerging in the primary motor cortex (M1) are implicated in regulating motor response vigor and associated with an anti-kinetic role, that is, slowness of movement. However, the functional role of M1 ß oscillations in regulation of motor responses remains unclear. To address this gap, we combined EEG with rhythmic TMS (rhTMS) delivered to M1 at the ß (20 Hz) frequency shortly before subjects performed an isometric ramp-and-hold finger force production task at three force levels. rhTMS is a novel approach that can modulate rhythmic patterns of neural activity. ß-rhTMS over M1 induced a modulation of neural oscillations to ß frequency in the sensorimotor area and reduced peak force rate during the ramp-up period relative to sham and catch trials. Interestingly, this rhTMS effect occurred only in the large force production condition. To distinguish whether the effects of rhTMS on EEG and behavior stemmed from phase-resetting by each magnetic pulse or neural entrainment by the periodicity of rhTMS, we performed a control experiment using arrhythmic TMS (arTMS). arTMS did not induce changes in EEG oscillations nor peak force rate during the rump-up period. Our results provide novel evidence that ß neural oscillations emerging the sensorimotor area influence the regulation of motor response vigor. Furthermore, our findings further demonstrate that rhTMS is a promising tool for tuning neural oscillations to the target frequency.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Humanos , Córtex Motor/fisiologia , Magnetoencefalografia , Eletroencefalografia/métodos , Periodicidade , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana
4.
Hum Brain Mapp ; 44(2): 447-457, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053213

RESUMO

Understanding brain activity linked to built environment exposure is important, as it may affect underlying cognitive, perceptual, and emotional processes, which have a critical influence in our daily life. As our time spent inside buildings is rising, and mental health problems have become more prevalent, it is important we investigate how design characteristics of the built environment impact brain function. In this study, we utilized electroencephalography to understand whether the design elements of scale and color of interior built environments modulate functional brain connectivity (i.e., brain network communication). Using a Cave Automatic Virtual Environment, while controlling indoor environmental quality responsible for physiological comfort, healthy adult participants aged 18-55 years (66 for scale, subset of 18 for color), were exposed to context-neutral indoor room scenes presented for two-minutes each. Our results show that both enlarging and reducing scale enhanced theta connectivity across the left temporoparietal region and right frontal region. We also found when reducing the built environment scale, there was a network exhibiting greater high-gamma connectivity, over the right frontoparietal region. For color, the condition (blue) contrasted to our achromatic control (white) increased theta connectivity in the frontal hemispheres. These findings identify a link between theta and gamma oscillations during exposure to the scale and color of the built environment, showing that design characteristics of the built environment could affect our cognitive processes and mental health. This suggests that, through the design of buildings, we may be able to mediate performance and health outcomes, which could lead to major health and economic benefits for society.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Humanos , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Lobo Frontal/fisiologia , Mapeamento Encefálico , Emoções
5.
Neuromodulation ; 26(4): 728-737, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36759231

RESUMO

BACKGROUND: Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations in the brain-has shown the capacity to enhance working memory (WM) abilities in healthy individuals. The efficacy of tACS in the improvement of WM performance in healthy individuals is not yet fully understood. OBJECTIVE/HYPOTHESIS: This meta-analysis aimed to systematically evaluate the efficacy of tACS in the enhancement of WM in healthy individuals and to assess moderators of response to stimulation. We hypothesized that active tACS would significantly enhance WM compared with sham. We further hypothesized that it would do so in a task-dependent manner and that differing stimulation parameters would affect response to tACS. MATERIALS AND METHODS: Ten tACS studies met the inclusion criteria and provided 32 effects in the overall analysis. Random-effect models assessed mean change scores on WM tasks from baseline to poststimulation. The included studies involved varied in stimulation parameters, between-subject and within-subject study designs, and online vs offline tACS. RESULTS: We observed a significant, heterogeneous, and moderate effect size for active tACS in the enhancement of WM performance over sham (Cohen's d = 0.5). Cognitive load, task domain, session number, and stimulation region showed a significant relationship between active tACS and enhanced WM behavior over sham. CONCLUSIONS: Our findings indicate that active tACS enhances WM performance in healthy individuals compared with sham. Future randomized controlled trials are needed to further explore key parameters, including personalized stimulation vs standardized electroencephalography frequencies and maintenance of tACS effects, and whether tACS-induced effects translate to populations with WM impairments.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Memória de Curto Prazo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Cognição/fisiologia , Encéfalo , Eletroencefalografia
6.
Neuromodulation ; 26(8): 1661-1667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34328685

RESUMO

OBJECTIVES: To evaluate the correlation between the pallidal local field potentials (LFPs) activity and the cortical oscillations (at rest and during several motor tasks) in two freely moving patients with generalized dystonia and pallidal deep brain stimulation (DBS). MATERIALS AND METHODS: Two women with isolated generalized dystonia were selected for bilateral globus pallidus internus (GPi) DBS. After the electrodes' implantation, cortical activity was recorded by a portable electroencephalography (EEG) system simultaneously with GPi LFPs activity, during several motor tasks, gait, and rest condition. Recordings were not performed during stimulation. EEG and LFPs signals relative to each specific movement were coupled together and grouped in neck/upper limbs movements and gait. Power spectral density (PSD), EEG-LFP coherence (through envelope of imaginary coherence operator), and 1/f exponent of LFP-PSD background were calculated. RESULTS: In both patients, the pallidal LFPs PSD at rest was characterized by prominent 4-12 Hz activity. Voluntary movements increased activity in the theta (θ) band (4-7 Hz) compared to rest, in both LFPs and EEG signals. Gait induced a drastic raise of θ activity in both patients' pallidal activity, less marked for the EEG signal. A coherence peak within the 8-13 Hz range was found between pallidal LFPs and EEG recorded at rest. CONCLUSIONS: Neck/upper limbs voluntary movements and gait suppressed the GPi-LFPs-cortical-EEG coherence and differently impacted both EEG and LFPs low frequency activity. These findings suggest a selective modulation of the cortico-basal ganglia network activity in dystonia.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Feminino , Distonia/terapia , Globo Pálido , Distúrbios Distônicos/terapia , Eletroencefalografia
7.
Neuroimage ; 256: 119245, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477021

RESUMO

Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but their differential relationships to neural stability and flexibility has never been investigated. Based on the existing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationalizing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory power, particularly in the alpha range (8-13 Hz), responds strongly to tasks and exhibits comparatively large spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated variables vs. effectors.


Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição , Fenômenos Eletrofisiológicos , Humanos , Magnetoencefalografia/métodos
8.
Neuroimage ; 251: 118974, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131434

RESUMO

Two techniques for analyzing human extracranial neurophysiological signals, namely the periodic/aperiodic parameterization of neural power spectra and the transient events framework of oscillatory activity, have recently emerged in the scientific literature. In this work, we integrate these two analysis perspectives to analyze extracranial neurophysiological signals as a series of transient rhythmic events disambiguated from the background aperiodic activity. We call this novel technique the periodic/aperiodic parametrization of transient oscillations (PAPTO). We demonstrate PAPTO by investigating resting-state sensorimotor magnetoencephalography recordings from the Cambridge Center for Ageing and Neuroscience cross-sectional study on healthy ageing (n = 600, ages 18-88). We show that PAPTO is more sensitive to neocortical transient beta rhythms compared to more conventional transient event detection algorithms and captures more variance in the resting-state occurrence rate of beta events across participants. The improved sensitivity of PAPTO reveals that the beta occurrence rate almost doubles over the adult lifespan which we discuss in terms of thalamocortical beta generation in the somatosensory cortex and the age-related decline of sensory perception.


Assuntos
Envelhecimento Saudável , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Ritmo beta/fisiologia , Estudos Transversais , Humanos , Magnetoencefalografia/métodos , Pessoa de Meia-Idade , Adulto Jovem
9.
Neuroimage ; 222: 117245, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818620

RESUMO

Non-invasive neurophysiological recordings, such as those measured by magnetoencelography (MEG), provide insight into the behaviour of neural networks and how these networks change with factors such as task performance, disease state, and age. Recently, there has been a trend in describing neurophysiological recordings as a series of transient bursts of neural activity rather than averaged sustained oscillations as burst characteristics may be more directly correlated with the neurological generators of brain activity. In this work, we investigate how beta burst characteristics change with age in a large open access dataset. The objectives are (1) to detect and characterize transient beta bursts over the ipsilateral and contralateral primary sensorimotor cortices during a unilateral motor task performance and during wakeful resting, and (2) to identify age-related changes in beta burst characteristics, in the context of earlier reports of age-related changes in beta suppression and the post-movement beta rebound. MEG data, acquired at the Cambridge Centre for Ageing and Neuroscience, of roughly 600 participants with a nearly uniform distribution of ages between 18 and 88 years old was used for analysis. We found that burst rate is the predominant factor related to age-related changes in the amplitude of the induced beta rhythm responses associated with a button press task. Furthermore, we present a cross-validation of burst parameters detected at the sensor- (peak sensor and sensor ROI) and source-level (beamformer spatial filter). This work is as an important step in characterizing transient bursts in neuromagnetic signals in the temporal domain, towards a better understanding of the healthy aging human brain.


Assuntos
Fatores Etários , Ritmo beta/fisiologia , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Descanso/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Adulto Jovem
10.
Cereb Cortex ; 29(12): 5234-5254, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30941394

RESUMO

Brain field potentials (FPs) can reach far from their sources, making difficult to know which waves come from where. We show that modern algorithms efficiently segregate the local and remote contributions to cortical FPs by recovering the generator-specific spatial voltage profiles. We investigated experimentally and numerically the local and remote origin of FPs in different cortical areas in anesthetized rats. All cortices examined show significant state, layer, and region dependent contribution of remote activity, while the voltage profiles help identify their subcortical or remote cortical origin. Co-activation of different cortical modules can be discriminated by the distinctive spatial features of the corresponding profiles. All frequency bands contain remote activity, thus influencing the FP time course, in cases drastically. The reach of different FP patterns is boosted by spatial coherence and curved geometry of the sources. For instance, slow cortical oscillations reached the entire brain, while hippocampal theta reached only some portions of the cortex. In anterior cortices, most alpha oscillations have a remote origin, while in the visual cortex the remote theta and gamma even surpass the local contribution. The quantitative approach to local and distant FP contributions helps to refine functional connectivity among cortical regions, and their relation to behavior.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Modelos Neurológicos , Animais , Eletroencefalografia , Ratos , Ratos Wistar
11.
J Neurophysiol ; 122(2): 563-571, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215344

RESUMO

The mammalian olfactory bulb displays a prominent respiratory rhythm, which is linked to the sniff cycle and is driven by sensory input from olfactory receptors in the nasal sensory epithelium. In rats and mice, respiratory frequencies occupy the same band as the hippocampal θ-rhythm, which has been shown to be a key player in memory processes. Hippocampal and olfactory bulb rhythms were previously found to be uncorrelated except in specific odor-contingency learning circumstances. However, many recent electrophysiological studies in both rodents and humans reveal a surprising cycle-by-cycle influence of nasal respiration on neuronal activity throughout much of the cerebral cortex beyond the olfactory system, including the prefrontal cortex, hippocampus, and subcortical structures. In addition, respiratory phase has been shown to influence higher-frequency oscillations associated with cognitive functions, including attention and memory, such as the power of γ-rhythms and the timing of hippocampal sharp wave ripples. These new findings support respiration's role in cognitive function, which is supported by studies in human subjects, in which nasal respiration has been linked to memory processes. Here, we review recent reports from human and rodent experiments that link respiration to the modulation of memory function and the neurophysiological processes involved in memory in rodents and humans. We argue that respiratory influence on the neuronal activity of two key memory structures, the hippocampus and prefrontal cortex, provides a potential neuronal mechanism behind respiratory modulation of memory.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Respiração , Animais , Humanos
12.
J Neurosci ; 37(42): 10074-10084, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28912155

RESUMO

Visual stimuli can evoke waves of neural activity that propagate across the surface of visual cortical areas. The relevance of these waves for visual processing is unknown. Here, we measured the phase and amplitude of local field potentials (LFPs) in electrode array recordings from the motion-processing medial temporal (MT) area of anesthetized male marmosets. Animals viewed grating or dot-field stimuli drifting in different directions. We found that, on individual trials, the direction of LFP wave propagation is sensitive to the direction of stimulus motion. Propagating LFP patterns are also detectable in trial-averaged activity, but the trial-averaged patterns exhibit different dynamics and behaviors from those in single trials and are similar across motion directions. We show that this difference arises because stimulus-sensitive propagating patterns are present in the phase of single-trial oscillations, whereas the trial-averaged signal is dominated by additive amplitude effects. Our results demonstrate that propagating LFP patterns can represent sensory inputs at timescales relevant to visually guided behaviors and raise the possibility that propagating activity patterns serve neural information processing in area MT and other cortical areas.SIGNIFICANCE STATEMENT Propagating wave patterns are widely observed in the cortex, but their functional relevance remains unknown. We show here that visual stimuli generate propagating wave patterns in local field potentials (LFPs) in a movement-sensitive area of the primate cortex and that the propagation direction of these patterns is sensitive to stimulus motion direction. We also show that averaging LFP signals across multiple stimulus presentations (trial averaging) yields propagating patterns that capture different dynamic properties of the LFP response and show negligible direction sensitivity. Our results demonstrate that sensory stimuli can modulate propagating wave patterns reliably in the cortex. The relevant dynamics are normally masked by trial averaging, which is a conventional step in LFP signal processing.


Assuntos
Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Animais , Callithrix , Potenciais Evocados Visuais/fisiologia , Masculino , Córtex Visual/fisiologia
13.
J Physiol ; 596(20): 5051-5061, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152170

RESUMO

KEY POINTS: Several behavioural studies have shown the sensory perceptions are reduced during movement; yet the neurophysiological reason for this is not clear. Participants underwent stimulation of the median nerve when either sitting quietly (i.e. passive stimulation condition) or performing haptic exploration of a ball with the left hand. Magnetoencephalographic brain imaging and advanced beamforming methods were used to identify the differences in somatosensory cortical responses. We show that the neural populations active during the passive stimulation condition were strongly gated during the haptic exploration task. These results imply that the reduced haptic perceptions might be governed by gating of certain somatosensory neural populations. ABSTRACT: Several behavioural studies have shown that children have reduced sensory perceptions during movement; however, the neurophysiological nexus for these altered perceptions remains unknown. We used magnetoencephalographic brain imaging and advanced beamforming methods to address this knowledge gap. In our experiment, a cohort of children (aged 10-18 years) underwent stimulation of the median nerve when either sitting quietly (i.e. passive stimulation condition) or performing haptic exploration of a ball with the left hand. Our results revealed two novel observations. First, there was a relationship between the child's age and the strength of the beta (18-26 Hz) response seen within the somatosensory cortices during the passive stimulation condition. This suggests that there may be an age-dependent change in the processing of peripheral feedback by the somatosensory cortices. Second, all of the cortical regions that were active during the passive stimulation condition were almost completely gated during the haptic task. Instead, the haptic task involved neural oscillations within Brodmann area 2, which is known to convey less spatially precise tactile information but is involved in the processing of more complex somatosensations across the respective digits. These results imply that the reduced somatosensory perceptions seen during movements in healthy children may be related to the gating of certain neural generators, as well as activation of haptic-specific neural generators within the somatosensory cortices. The utilization of such haptic-specific circuits during development may lead to the enhanced somatosensory processing during haptic exploration seen in healthy adults.


Assuntos
Potenciais Somatossensoriais Evocados , Córtex Somatossensorial/fisiologia , Tato , Adolescente , Ritmo beta , Criança , Feminino , Humanos , Masculino , Movimento , Filtro Sensorial , Córtex Somatossensorial/crescimento & desenvolvimento
14.
Neuroimage ; 174: 380-392, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555428

RESUMO

A single bout of cardiovascular exercise performed immediately after practicing a visuo-motor tracking task has been shown to improve the long-term retention of this motor skill through an optimization of the memory consolidation process. The mechanisms underlying the time-dependent effects of acute cardiovascular exercise on motor memory consolidation, however, remain poorly understood. In this study, we sought to determine the impact of a single bout of cardiovascular exercise performed immediately after motor skill practice on those mechanisms using electroencephalography (EEG) and electromyography (EMG). Specifically, we assessed exercise-induced changes in the activity and connectivity of cortico-motor networks during early consolidation and the impact of these changes on skill retention. Participants practiced a visuo-motor tracking task followed by either a short bout of intense exercise or a rest period. EEG along with EMG data of hand muscles were collected during the production of low-force isometric contractions. Event-related desynchronization, functional connectivity and corticomuscular coherence were measured at baseline, 30, 60 and 90 min after the bout of exercise or the rest period. Improvements in motor memory were inferred via retention tests of the motor skill performed 8 and 24 h after motor practice. We found that participants who performed the single bout of exercise showed better motor skill retention 24 h after motor practice. This improvement in skill retention in the exercise group was associated with significant decreases in beta-band event-related desynchronization in EEG electrodes located over the left sensorimotor areas. We also found that after exercise, alpha-, and even more significantly, beta-band functional connectivity, increased between EEG electrodes located over left and right sensorimotor areas. The exercise group also showed greater beta-band corticomuscular coherence but only in a small number of electrodes. Neither functional connectivity nor corticomuscular coherence measures correlated with skill retention scores. This is the first study exploring brain mechanisms underlying the summative effects of motor learning and cardiovascular exercise on motor memory consolidation. We have identified potential neural substrates through which a single bout of acute exercise, when performed in close temporal proximity to motor practice, strengthens motor memories. Our findings provide new mechanistic insights into a better understanding of the complex temporal relationship existing between cardiovascular exercise and motor memory consolidation.


Assuntos
Exercício Físico , Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Destreza Motora , Prática Psicológica , Adulto , Ondas Encefálicas , Eletroencefalografia , Eletromiografia , Feminino , Mãos/inervação , Humanos , Masculino , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Adulto Jovem
15.
Hum Brain Mapp ; 39(5): 1972-1981, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363226

RESUMO

Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event-related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep-penetrating 980-nm diode laser. The index finger of each participant (n = 24) was irradiated with the laser warmth stimulus, and the cortical responses were measured using magnetoencephalography (MEG). The ERFs and oscillatory responses had late latencies (∼1.3 s and 1.0-1.5 s for ERFs and oscillatory responses, respectively), which could be explained by a slow conduction velocity of warmth-specific C-fibers. Cortical sources of warmth-related ERFs were seen in the bilateral primary and secondary somatosensory cortices (SI and SII), posterior part of the anterior cingulate cortex (pACC), ipsilateral primary motor, and premotor cortex. Thus, we suggested that SI, SII, and pACC play a role in processing the warmth sensation. Time-frequency analysis demonstrated the suppression of the alpha (8-13 Hz) and beta (18-23 Hz) band power in the bilateral sensorimotor cortex. We proposed that the suppressions in alpha and beta band power are involved in the automatic response to the input of warmth stimulation and sensorimotor interactions. The delta band power (1-4 Hz) increased in the frontal, temporal, and cingulate cortices. The power changes in delta band might be related with the attentional processes during the warmth stimulation.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Magnetoencefalografia , Pele/inervação , Temperatura , Adulto , Atenção/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Física , Adulto Jovem
16.
J Comput Neurosci ; 45(1): 1-28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923159

RESUMO

Spontaneous cortical population activity exhibits a multitude of oscillatory patterns, which often display synchrony during slow-wave sleep or under certain anesthetics and stay asynchronous during quiet wakefulness. The mechanisms behind these cortical states and transitions among them are not completely understood. Here we study spontaneous population activity patterns in random networks of spiking neurons of mixed types modeled by Izhikevich equations. Neurons are coupled by conductance-based synapses subject to synaptic noise. We localize the population activity patterns on the parameter diagram spanned by the relative inhibitory synaptic strength and the magnitude of synaptic noise. In absence of noise, networks display transient activity patterns, either oscillatory or at constant level. The effect of noise is to turn transient patterns into persistent ones: for weak noise, all activity patterns are asynchronous non-oscillatory independently of synaptic strengths; for stronger noise, patterns have oscillatory and synchrony characteristics that depend on the relative inhibitory synaptic strength. In the region of parameter space where inhibitory synaptic strength exceeds the excitatory synaptic strength and for moderate noise magnitudes networks feature intermittent switches between oscillatory and quiescent states with characteristics similar to those of synchronous and asynchronous cortical states, respectively. We explain these oscillatory and quiescent patterns by combining a phenomenological global description of the network state with local descriptions of individual neurons in their partial phase spaces. Our results point to a bridge from events at the molecular scale of synapses to the cellular scale of individual neurons to the collective scale of neuronal populations.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/citologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Dinâmica não Linear , Algoritmos , Animais , Córtex Cerebral/fisiologia , Inibição Neural , Redes Neurais de Computação , Neurônios/classificação , Ruído , Periodicidade , Sinapses/fisiologia , Transmissão Sináptica
17.
Brain ; 140(12): 3153-3165, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155975

RESUMO

Sensory areas of the cerebral cortex integrate the sensory inputs with the ongoing activity. We studied how complete absence of auditory experience affects this process in a higher mammal model of complete sensory deprivation, the congenitally deaf cat. Cortical responses were elicited by intracochlear electric stimulation using cochlear implants in adult hearing controls and deaf cats. Additionally, in hearing controls, acoustic stimuli were used to assess the effect of stimulus mode (electric versus acoustic) on the cortical responses. We evaluated time-frequency representations of local field potential recorded simultaneously in the primary auditory cortex and a higher-order area, the posterior auditory field, known to be differentially involved in cross-modal (visual) reorganization in deaf cats. The results showed the appearance of evoked (phase-locked) responses at early latencies (<100 ms post-stimulus) and more abundant induced (non-phase-locked) responses at later latencies (>150 ms post-stimulus). In deaf cats, substantially reduced induced responses were observed in overall power as well as duration in both investigated fields. Additionally, a reduction of ongoing alpha band activity was found in the posterior auditory field (but not in primary auditory cortex) of deaf cats. The present study demonstrates that induced activity requires developmental experience and suggests that higher-order areas involved in the cross-modal reorganization show more auditory deficits than primary areas.


Assuntos
Córtex Auditivo/fisiopatologia , Cóclea , Implantes Cocleares , Surdez/fisiopatologia , Estimulação Elétrica , Potenciais Evocados Auditivos/fisiologia , Privação Sensorial/fisiologia , Estimulação Acústica , Animais , Estudos de Casos e Controles , Gatos , Surdez/congênito , Eletroencefalografia
18.
J Neurosci ; 36(33): 8541-50, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535903

RESUMO

UNLABELLED: A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited. SIGNIFICANCE STATEMENT: In this study, we show for the first time that neuronal oscillatory power is intimately linked to arterial CO2 concentration down to the fine-scale modulations that occur during spontaneous breathing. We extend these results to demonstrate a correlation between neuronal oscillatory power and spontaneous arterial CO2 fluctuations in awake humans at rest. This work identifies a need for studies investigating resting-state networks in the human brain to measure and account for the impact of spontaneous changes in arterial CO2 on the neuronal signals of interest. Changes in breathing pattern that are time locked to task performance could also lead to confounding effects on neuronal oscillatory power when considering the electrophysiological response to functional stimulation.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Dióxido de Carbono/sangue , Imageamento por Ressonância Magnética , Magnetoencefalografia , Rede Nervosa/diagnóstico por imagem , Descanso , Adulto , Relógios Biológicos/fisiologia , Dióxido de Carbono/administração & dosagem , Feminino , Humanos , Hipercapnia/sangue , Hipercapnia/patologia , Hipercapnia/fisiopatologia , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Neurônios/metabolismo , Oxigênio/sangue
19.
J Neurosci ; 36(2): 268-79, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758821

RESUMO

Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. SIGNIFICANCE STATEMENT: Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of error detection in the trials where human onlookers embodied the virtual character. Thus, the cerebral system for action monitoring is maximally activated when others' errors are coded as if they are one's own errors. The results have important implications for understanding how the brain can control the external world and thus creating new brain-computer interfaces.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Relações Interpessoais , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Ondas Encefálicas , Eletroencefalografia , Potenciais Evocados , Feminino , Análise de Fourier , Humanos , Masculino , Observação , Estimulação Luminosa , Tempo de Reação/fisiologia , Fatores de Tempo , Interface Usuário-Computador , Adulto Jovem
20.
J Physiol ; 595(4): 1365-1375, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27779747

RESUMO

KEY POINTS: Sensory gating is important for preventing excessive environmental stimulation from overloading neural resources. Gating in the human somatosensory cortices is a critically understudied topic, particularly in the lower extremities. We utilize the unique capabilities of magnetoencephalographic neuroimaging to quantify the normative neural population responses and dynamic functional connectivity of somatosensory gating in the lower extremities of healthy human participants. We show that somatosensory processing is subserved by a robust gating effect in the oscillatory domain, as well as a dynamic effect on interhemispheric functional connectivity between primary sensory cortices. These results provide novel insight into the dynamic neural mechanisms that underlie the processing of somatosensory information in the human brain, and will be vital in better understanding the neural responses that are aberrant in gait-related neurological disorders (e.g. cerebral palsy). ABSTRACT: Sensory gating (SG) is a phenomenon in which neuronal responses to subsequent similar stimuli are weaker, and is considered to be an important mechanism for preventing excessive environmental stimulation from overloading shared neural resources. Although gating has been demonstrated in multiple sensory systems, the neural dynamics and developmental trajectory underlying SG remain poorly understood. In the present study, we adopt a data-driven approach to map the spectrotemporal amplitude and functional connectivity (FC) dynamics that support gating in the somatosensory system (somato-SG) in healthy children and adolescents using magnetoencephalography (MEG). These data underwent time-frequency decomposition and the significant signal changes were imaged using a beamformer. Voxel time series were then extracted from the peak voxels and these signals were examined in the time and time-frequency domains, and then subjected to dynamic FC analysis. The results obtained indicate a significant decrease in the amplitude of the neural response following the second stimulation relative to the first in the primary somatosensory cortex (SI). A significant decrease in response latency was also found between stimulations, and each stimulation induced a sharp decrease in FC between somatosensory cortical areas. Furthermore, there were no significant correlations between somato-SG metrics and age. We conclude that somato-SG can be observed in SI in both the time and oscillatory domains, with rich dynamics and alterations in inter-hemispheric FC, and that this phenomenon has already matured by early childhood. A better understanding of these dynamics may provide insight to the numerous psychiatric and neurologic conditions that have been associated with aberrant SG across multiple modalities.


Assuntos
Potenciais Somatossensoriais Evocados , Filtro Sensorial , Córtex Somatossensorial/fisiologia , Adolescente , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino , Tempo de Reação , Córtex Somatossensorial/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa