Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Mol Ecol ; 33(15): e17454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39005142

RESUMO

The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.


Assuntos
Formigas , Domesticação , Filogenia , RNA Ribossômico 16S , Simbiose , Animais , Simbiose/genética , Formigas/microbiologia , Formigas/genética , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Bactérias/genética , Bactérias/classificação , Evolução Biológica
2.
Proc Biol Sci ; 290(2008): 20231385, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788699

RESUMO

Weevils have been shown to play significant roles in the obligate pollination of Australian cycads. In this study, we apply museomics to produce a first molecular phylogeny estimate of the Australian cycad weevils, allowing an assessment of their monophyly, placement and relationships. Divergence dating suggests that the Australian cycad weevils originated from the Late Oligocene to the Middle Miocene and that the main radiation of the cycad-pollinating groups occurred from the Middle to the Late Miocene, which is congruent with the diversification of the Australian cycads, thus refuting any notion of an ancient ciophilous system in Australia. Taxonomic studies reveal the existence of 19 Australian cycad weevil species and that their associations with their hosts are mostly non-species-specific. Co-speciation analysis shows no extensive co-speciation events having occurred in the ciophilous system of Australian cycads. The distribution pattern suggests that geographical factors, rather than diversifying coevolution, constitute the overriding process shaping the Australian cycad weevil diversity. The synchronous radiation of cycads and weevil pollinators is suggested to be a result of the post-Oligocene diversification common in Australian organisms.


Assuntos
Gorgulhos , Animais , Gorgulhos/genética , Austrália , Filogenia , Cycadopsida , Geografia
3.
J Evol Biol ; 36(12): 1659-1668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750599

RESUMO

When lineages of hosts and microbial symbionts engage in intimate interactions over evolutionary timescales, they can diversify in parallel (i.e., co-diversify), producing associations between the lineages' phylogenetic histories. Tests for co-diversification of individual microbial lineages and their hosts have been developed previously, and these have been applied to discover ancient symbioses in diverse branches of the tree of life. However, most host-microbe relationships are not binary but multipartite, in that a single host-associated microbiota can contain many microbial lineages, generating challenges for assessing co-diversification. Here, we review recent evidence for co-diversification in complex microbiota, highlight the limitations of prior studies, and outline a hypothesis testing approach designed to overcome some of these limitations. We advocate for the use of microbiota-wide scans for co-diversifying symbiont lineages and discuss tools developed for this purpose. Tests for co-diversification for simple host symbiont systems can be extended to entire phylogenies of microbial lineages (e.g., metagenome-assembled or isolate genomes, amplicon sequence variants) sampled from host clades, thereby providing a means for identifying co-diversifying symbionts present within complex microbiota. The relative ages of symbiont clades can corroborate co-diversification, and multi-level permutation tests can account for multiple comparisons and phylogenetic non-independence introduced by repeated sampling of host species. Discovering co-diversifying lineages will generate powerful opportunities for interrogating the molecular evolution and lineage turnover of ancestral, host-species specific symbionts within host-associated microbiota.


Assuntos
Evolução Biológica , Microbiota , Filogenia , Evolução Molecular , Genoma , Simbiose
4.
Parasitology ; 150(14): 1307-1315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37395052

RESUMO

Host­parasite associations provide a benchmark for investigating evolutionary arms races and antagonistic coevolution. However, potential ecological mechanisms underlying such associations are difficult to unravel. In particular, local adaptations of hosts and/or parasites may hamper reliable inferences of host­parasite relationships and the specialist­generalist definitions of parasite lineages, making it problematic to understand such relationships on a global scale. Phylogenetic methods were used to investigate co-phylogenetic patterns between vector-borne parasites of the genus Haemoproteus and their passeriform hosts, to infer the ecological interactions of parasites and hosts that may have driven the evolution of both groups in a local geographic domain. As several Haemoproteus lineages were only detected once, and given the occurrence of a single extreme generalist, the effect of removing individual lineages on the co-phylogeny pattern was tested. When all lineages were included, and when all singly detected lineages were removed, there was no convincing evidence for host­parasite co-phylogeny. However, when only the generalist lineage was removed, strong support for co-phylogeny was indicated, and ecological interactions could be successfully inferred. This study exemplifies the importance of identifying locally abundant lineages when sampling host­parasite systems, to provide reliable insights into the precise mechanisms underlying host­parasite interactions.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Animais , Filogenia , Haemosporida/genética , Interações Hospedeiro-Parasita , Doenças das Aves/parasitologia
5.
Proc Biol Sci ; 289(1970): 20220042, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259992

RESUMO

Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.


Assuntos
Parasitos , Ftirápteros , Animais , Columbidae , Interações Hospedeiro-Parasita , Filogenia
6.
Mol Ecol ; 31(20): 5368-5385, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35960256

RESUMO

The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Filogenia , Simbiose/genética
7.
Parasitology ; : 1-8, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393002

RESUMO

Parasites display various degrees of host specificity, reflecting different coevolutionary histories with their hosts. Avian hosts follow multiple migration patterns representing short but also long distances. As parasites infecting migratory birds are subjected to multiple environmental and biotic changes through their flyways, migration may disrupt or strengthen cophylogenetic congruence between hosts and parasites. On the one hand, parasites might adapt to a single migratory host, evolving to cope with the specific challenges associated with the multiple habitats occupied by the host. On the other, as migrants can introduce parasites into new habitats, higher rates of host switching could also disrupt cophylogenetic patterns. We analysed whether migratory behaviour shapes avian haemosporidian parasite­host cophylogenetic congruence by testing if contributions of host­parasite links to overall congruence differ among resident and short-, variable- and long-distance migrants globally and within South America only. On both scales, we found significant overall cophylogenetic congruence by testing whether overall congruence differed between haemosporidian lineages and bird species. However, we found no difference in contribution towards congruence among links involving resident vs migratory hosts in both models. Thus, migratory behaviour neither weakens nor strengthens bird­haemosporidian cophylogenetic congruence, suggesting that other avian host traits are more influential in generating phylogenetic congruence in this host­parasite system.

8.
Parasitol Res ; 121(5): 1207-1245, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35098377

RESUMO

The order Piroplasmida, including the genera Babesia, Cytauxzoon, and Theileria is often referred to as piroplasmids and comprises of dixenous hemoprotozoans transmitted by ticks to a mammalian or avian host. Although piroplasmid infections are usually asymptomatic in wild animals, in domestic animals, they cause serious or life-threatening consequences resulting in fatalities. Piroplasmids are particularly notorious for the enormous economic loss they cause worldwide in livestock production, the restrictions they pose on horse trade, and the negative health impact they have on dogs and cats. Furthermore, an increasing number of reported human babesiosis cases are of growing concern. Considerable international research and epidemiological studies are done to identify existing parasite species, reveal their phylogenetic relationships, and develop improved or new drugs and vaccines to mitigate their impact. In this review, we present a compilation of all piroplasmid species, isolates, and species complexes that infect domestic mammals and which have been well defined by molecular phylogenetic markers. Altogether, 57 taxonomic piroplasmid entities were compiled, comprising of 43 piroplasmid species, 12 well-defined isolates awaiting formal species description, and two species complexes that possibly mask additional species. The extrapolation of the finding of at least 57 piroplasmid species in only six domestic mammalian groups (cattle, sheep, goat, horse, dog, and cat) allows us to predict that a substantially higher number of piroplasmid parasites than vertebrate host species exist. Accordingly, the infection of a vertebrate host species by multiple piroplasmid species from the same and/or different phylogenetic lineages is commonly observed. Molecular phylogeny using 18S rRNA genes of piroplasmids infecting domestic mammals results in the formation of six clades, which emerge due to an anthropocentric research scope, but not due to a possibly assumed biological priority position. Scrutinizing the topology of inferred trees reveals stunning insights into some evolutionary patterns exhibited by this intriguing group of parasites. Contrary to expectations, diversification of parasite species appears to be dominated by host-parasite cospeciation (Fahrenholz's rule), and, except for piroplasmids that segregate into Clade VI, host switching is rarely observed. When only domestic mammalian hosts are taken into account, Babesia sensu lato (s.l.) parasites of Clades I and II infect only dogs and cats, respectively, Cytauxzoon spp. placed into Clade III only infect cats, Theileria placed into Clade IV exclusively infect horses, wheras Theileria sensu stricto (s.s.) of Clade V infects only cattle and small ruminants. In contrast, Babesia s.s. parasites of Clade VI infect all farm and companion animal species. We outline how the unique ability of transovarial transmission of Babesia s.s. piroplasmids of Clade VI facilitates species diversification by host switching to other host vertebrate species. Finally, a deterioration of sequence fidelity in databases is observed which will likely lead to an increased risk of artifactual research in this area. Possible measures to reverse and/or avoid this threat are discussed.


Assuntos
Babesia , Babesiose , Doenças do Gato , Doenças do Cão , Haemosporida , Piroplasmida , Theileria , Animais , Babesiose/parasitologia , Gatos , Bovinos , Doenças do Cão/parasitologia , Cães , Fazendas , Haemosporida/genética , Cavalos , Mamíferos , Filogenia , RNA Ribossômico 18S/genética , Ovinos/genética , Theileria/genética
9.
Mol Phylogenet Evol ; 161: 107179, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887480

RESUMO

Sponges represent one of the most species-rich hosts for commensal barnacles yet host utilisation and diversity have not been thoroughly examined. This study investigated the diversity and phylogenetic relationships of sponge-inhabiting barnacles within a single, targeted host group, primarily from Western Australian waters. Specimens of the sponge order Dictyoceratida were surveyed and a total of 64 host morphospecies, representing four families, were identified as barnacle hosts during the study. Utilising molecular (COI, 12S) and morphological methods 42 molecular operational taxonomic units (MOTUs) of barnacles, representing Acasta, Archiacasta, Euacasta and Neoacasta were identified. Comparing inter- and intra-MOTU genetic distances showed a barcode gap between 2.5% and 5% for COI, but between 1% and 1.5% in the 12S dataset, thus demonstrating COI as a more reliable barcoding region. These sponge-inhabiting barnacles were demonstrated to show high levels of host specificity with the majority being found in a single sponge species (74%), a single genus (83%) or a single host family (93%). Phylogenetic relationships among the barnacles were reconstructed using mitochondrial (12S, COI) and nuclear (H3, 28S) markers. None of the barnacle genera were recovered as monophyletic. Euacasta was paraphyletic in relation to the remaining Acastinae genera, which were polyphyletic. Six well-supported clades of molecular operational taxonomic units, herein considered to represent species complexes, were recovered, but relationships between them were not well supported. These complexes showed differing patterns of host usage, though most were phylogenetically conserved with sister lineages typically occupying related hosts within the same genus or family of sponge. The results show that host specialists are predominant, and the dynamics of host usage have played a significant role in the evolutionary history of the Acastinae.


Assuntos
Especificidade de Hospedeiro , Filogenia , Poríferos , Thoracica/classificação , Animais , Austrália Ocidental
10.
J Eukaryot Microbiol ; 68(5): e12862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120379

RESUMO

Symbiotic protists play important roles in the wood digestion of lower termites. Previous studies showed that termites generally possess host-specific flagellate communities. The genus Reticulitermes is particularly interesting because its unique assemblage of gut flagellates bears evidence for transfaunation. The gut fauna of Reticulitermes species in Japan, Europe, and North America had been investigated, but data on species in China are scarce. For the first time, we analyzed the phylogeny of protists in the hindgut of five Reticulitermes species in China. A total of 22 protist phylotypes were affiliated with the family Trichonymphidae, Teranymphidae, Trichomonadidae, and Holomastigotoididae (Phylum Parabasalia), and 45 protist phylotypes were affiliated with the family Pyrsonymphidae (Phylum Preaxostyla). The protist fauna of these five Reticulitermes species is similar to those of Reticulitermes species in other geographical regions. The topology of Trichonymphidae subtree was similar to that of Reticulitermes tree. All Preaxostyla clones were affiliated with the genera Pyrsonympha and Dinenympha (Order Oxymonadida) as in the other Reticulitermes species. The results of this study not only add to the existing information on the flagellates present in other Reticulitermes species but also offer the opportunity to test the hypotheses for the coevolution of symbiotic protists with their host termites.


Assuntos
Isópteros , Animais , China , Eucariotos/genética , Filogenia , Simbiose
11.
Mol Phylogenet Evol ; 153: 106947, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866615

RESUMO

Parasite species evolve by switching to new hosts, cospeciating with their current hosts, or speciating on their current hosts. Vector transmitted parasites are expected to speciate by host switching, but confirming this hypothesis has proved challenging. Parasite DNA can be difficult to sequence, thus well resolved parasite phylogenies that are needed to distinguish modes of parasite speciation are often lacking. Here, we studied speciation in vector transmitted avian haemosporidian parasites in the genus Haemoproteus and their warbler hosts (family Acrocephalidae). We overcome the difficulty of generating parasite genetic data by combining nested long-range PCR with next generation sequencing to sequence whole mitochondrial genomes from 19 parasite haplotypes confined to Acrocephalidae warblers, resulting in a well-supported parasite phylogeny. We also generated a well-supported host phylogeny using five genes from published sources. Our phylogenetic analyses confirm that these parasites have speciated by host switching. We also found that closely related host species shared parasites which themselves were not closely related. Sharing of parasites by closely related host species is not due to host geographic range overlap, but may be the result of phylogenetically conserved host immune systems.


Assuntos
Genoma Mitocondrial/genética , Haemosporida/classificação , Haemosporida/genética , Filogenia , Infecções por Protozoários/parasitologia , Aves Canoras/parasitologia , Animais , Especiação Genética , Haplótipos , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita/genética , Infecções por Protozoários/transmissão
12.
Annu Rev Microbiol ; 69: 145-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26195303

RESUMO

Termite guts harbor a dense and diverse microbiota that is essential for symbiotic digestion. The major players in lower termites are unique lineages of cellulolytic flagellates, whereas higher termites harbor only bacteria and archaea. The functions of the mostly uncultivated lineages and their distribution in different diet groups are slowly emerging. Patterns in community structure match changes in the biology of different host groups and reflect the availability of microbial habitats provided by flagellates, wood fibers, and the increasing differentiation of the intestinal tract, which also creates new niches for microbial symbionts. Whereas the intestinal communities in the closely related cockroaches seem to be shaped primarily by the selective forces of microhabitat and functional niche, the social behavior of termites reduces the stochastic element of community assembly, which facilitates coevolution and may ultimately result in cospeciation.


Assuntos
Isópteros/microbiologia , Animais , Archaea/classificação , Bactérias/classificação , Eucariotos/classificação , Microbioma Gastrointestinal , Isópteros/fisiologia , Simbiose
13.
Ecol Lett ; 22(5): 826-837, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868708

RESUMO

The mammalian gut microbiota is considered pivotal to host fitness, yet the determinants of community composition remain poorly understood. Laboratory studies show that environmental factors, particularly diet, are important, while comparative work emphasises host genetics. Here, we compare the influence of host genetics and the environment on the microbiota of sympatric small mammal species (mice, voles, shrews) across multiple habitats. While sharing a habitat caused some microbiota convergence, the influence of species identity dominated. In all three host genera examined, an individual's microbiota was more similar to conspecifics living elsewhere than to heterospecifics at the same site. Our results suggest this species-specificity arises in part through host-microbe codiversification. Stomach contents analysis suggested that diet also shapes the microbiota, but where diet is itself influenced by species identity. In this way, we can reconcile the importance of both diet and genetics, while showing that species identity is the strongest predictor of microbiota composition.


Assuntos
Microbioma Gastrointestinal , Mamíferos , Microbiota , Animais , Mamíferos/microbiologia , Camundongos , Simpatria
14.
New Phytol ; 224(3): 1304-1315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494940

RESUMO

Interactions between mutualists, competitors, and antagonists have contrasting ecological effects that, sustained over generations, can influence micro- and macroevolution. Dissimilar benefits and costs for these interactions should cause contrasting co-diversification patterns between interacting clades, with prevalent co-speciation by mutualists, association loss by competitors, and host switching by antagonists. We assessed these expectations for a local assemblage of 26 fig species (Moraceae: Ficus), 26 species of mutualistic (pollinating), and 33 species of parasitic (galling) wasps (Chalcidoidea). Using newly acquired gene sequences, we inferred the phylogenies for all three clades. We then compared the three possible pairs of phylogenies to assess phylogenetic congruence and the relative frequencies of co-speciation, association duplication, switching, and loss. The paired phylogenies of pollinators with their mutualists and competitors were significantly congruent, unlike that of figs and their parasites. The distributions of macroevolutionary events largely agreed with expectations for mutualists and antagonists. By contrast, that for competitors involved relatively frequent association switching, as expected, but also unexpectedly frequent co-speciation. The latter result likely reflects the heterogeneous nature of competition among fig wasps. These results illustrate the influence of different interspecific interactions on co-diversification, while also revealing its dependence on specific characteristics of those interactions.


Assuntos
Biodiversidade , Ficus/fisiologia , Animais , Filogenia , Polinização/fisiologia , Especificidade da Espécie , Vespas
15.
New Phytol ; 224(2): 605-617, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381166

RESUMO

Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.


Assuntos
Evolução Biológica , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Plantas/microbiologia , Fungos/genética
16.
Mol Ecol ; 28(17): 4118-4133, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31232488

RESUMO

Plant-pollinator interactions are often highly specialised, which may be a consequence of co-evolution. Yet when plants and pollinators co-evolve, it is not clear if this will also result in frequent cospeciation. Here, we investigate the mutual evolutionary history of South African oil-collecting Rediviva bees and their Diascia host plants, in which the elongated forelegs of female Rediviva have been suggested to coevolve with the oil-producing spurs of their Diascia hosts. After controlling for phylogenetic nonindependence, we found Rediviva foreleg length to be significantly correlated with Diascia spur length, suggestive of co-evolution. However, as trait correlation could also be due to pollinator shifts, we tested if cospeciation or pollinator shifts have dominated the evolution of Rediviva-Diascia interactions by analysing phylogenies in a cophylogenetic framework. Distance-based cophylogenetic analyses (PARAFIT, PACo) indicated significant congruence of the two phylogenies under most conditions. Yet, we found that phylogenetic relatedness was correlated with ecological similarity (the spectrum of partners that each taxon interacted with) only for Diascia but not for Rediviva, suggesting that phylogenetic congruence might be due to phylogenetic tracking by Diascia of Rediviva rather than strict (reciprocal) co-evolution. Furthermore, event-based reconciliation using a parsimony approach (CORE-PA) on average revealed only 11-13 cospeciation events but 58-80 pollinator shifts. Probabilistic cophylogenetic analyses (COALA) supported this trend (8-29 cospeciations vs. 40 pollinator shifts). Our study suggests that diversification of Diascia has been largely driven by Rediviva (phylogenetic tracking, pollinator shifts) but not vice versa. Moreover, our data suggest that, even in co-evolving mutualisms, cospeciation events might occur only infrequently.


Assuntos
Abelhas/genética , Evolução Biológica , Especiação Genética , Interações Hospedeiro-Parasita/genética , Polinização/fisiologia , Scrophulariaceae/parasitologia , Animais , Filogenia , Característica Quantitativa Herdável
17.
Mol Ecol ; 28(17): 3958-3976, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338917

RESUMO

Even though speciation involving multiple interacting partners, such as plants and their pollinators, has attracted much research, most studies focus on isolated phases of the process. This currently precludes an integrated understanding of the mechanisms leading to cospeciation. Here, we examine population genetic structure across six species-pairs of figs and their pollinating wasps along an elevational gradient in New Guinea. Specifically, we test three hypotheses on the genetic structure within the examined species-pairs and find that the hypothesized genetic structures represent different phases of a single continuum, from incipient cospeciation to the full formation of new species. Our results also illuminate the mechanisms governing cospeciation, namely that fig wasps tend to accumulate population genetic differences faster than their figs, which initially decouples the speciation dynamics between the two interacting partners and breaks down their one-to-one matching. This intermediate phase is followed by genetic divergence of both partners, which may eventually restore the one-to-one matching among the fully formed species. Together, these findings integrate current knowledge on the mechanisms operating during different phases of the cospeciation process. They also reveal that the increasingly reported breakdowns in one-to-one matching may be an inherent part of the cospeciation process. Mechanistic understanding of this process is needed to explain how the extraordinary diversity of species, especially in the tropics, has emerged. Knowing which breakdowns in species interactions are a natural phase of cospeciation and which may endanger further generation of diversity seems critical in a constantly changing world.


Assuntos
Ficus/genética , Ficus/parasitologia , Especiação Genética , Interações Hospedeiro-Patógeno/genética , Vespas/genética , Animais , Geografia , Filogenia , Especificidade da Espécie
18.
Mol Phylogenet Evol ; 141: 106603, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470133

RESUMO

The bee genus Epeolus Latreille (Hymenoptera: Apidae) consists of 109 species, which are known to be exclusively cleptoparasites of polyester (or cellophane) bees of the genus Colletes Latreille (Hymenoptera: Colletidae). Both genera have a nearly cosmopolitan distribution and are represented on all continents except Antarctica and Australia. We present the most comprehensive phylogeny for Epeolus to date, based on combined molecular and morphological data. In total, 59 ingroup taxa (species of Epeolus) and 7 outgroup taxa (other Epeolini) were scored for 99 morphological characters, and sequence data were obtained for seven genes (one mitochondrial and six nuclear, 5399 bp in total). Epeolus was found to be monophyletic, with a crown age estimated to be 25.0-13.4 Ma (95% HPD) and its origins traced to the Nearctic region. Epeolus was found to contain six major clades, five of which were well supported. The evolutionary history of Epeolus is explored in the context of earth history events and the evolutionary history of its host genus Colletes, for which a molecular phylogeny was constructed based on the same seven genes. A comparison of Epeolus and Colletes phylogenies limited to taxa for which there is evidence of an association suggests there was some cospeciation. However, more cladogenetic events in Epeolus were linked to instances of dispersal/vicariance. It is not yet clear the extent to which allopatric speciation contributed to diversification in Colletes, but the genus' success in having colonized and diversified across much of the globe made it possible for Epeolus to do the same.


Assuntos
Abelhas/classificação , Interações Hospedeiro-Parasita , Himenópteros/parasitologia , Filogenia , Filogeografia , Animais , Regiões Antárticas , Austrália , Especiação Genética
19.
Parasitology ; 146(8): 1083-1095, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31046855

RESUMO

Unlike most bird species, individual kingfisher species (Aves: Alcedinidae) are typically parasitized by only a single genus of louse (Alcedoffula, Alcedoecus, or Emersoniella). These louse genera are typically specific to a particular kingfisher subfamily. Specifically, Alcedoecus and Emersoniella parasitize Halcyoninae, whereas Alcedoffula parasitizes Alcedininae and Cerylinae. Although Emersoniella is geographically restricted to the Indo-Pacific region, Alcedoecus and Alcedoffula are geographically widespread. We used DNA sequences from two genes, the mitochondrial COI and nuclear EF-1α genes, to infer phylogenies for the two geographically widespread genera of kingfisher lice, Alcedoffula and Alcedoecus. These phylogenies included 47 kingfisher lice sampled from 11 of the 19 currently recognized genera of kingfishers. We compared louse phylogenies to host phylogenies to reconstruct their cophylogenetic history. Two distinct clades occur within Alcedoffula, one that infests Alcedininae and a second that infests Cerylinae. All species of Alcedoecus were found only on host species of the subfamily Halcyoninae. Cophylogenetic analysis indicated that Alcedoecus, as well as the clade of Alcedoffula occurring on Alcedininae, do not show evidence of cospeciation. In contrast, the clade of Alcedoffula occurring on Cerylinae showed strong evidence of cospeciation.


Assuntos
Coevolução Biológica , Aves/parasitologia , Especiação Genética , Interações Hospedeiro-Parasita , Ftirápteros/fisiologia , Animais , Ftirápteros/classificação , Ftirápteros/genética
20.
Parasitol Res ; 118(9): 2557-2566, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342151

RESUMO

It has been shown that the milk shark, Rhizoprionodon acutus (Rüppell), is probably a complex of four narrowly distributed cryptic species. To confirm this hypothesis, the oioxenous species of the onchoproteocephalid genus Phoreiobothrium Linton, 1889 was recently used to recognize each shark species of this species complex so that P. nadiae Caira and Jensen, 2015, P. swaki Caira and Jensen, 2015, and P. jahki Caira and Jensen, 2015 were described respectively from Rhizoprionodon cf. acutus 1 off Senegal, R. cf. acutus 2 off northern Australia, and R. cf. acutus 3 off Borneo. Nonetheless, the Phoreiobothrium fauna of R. acutus sensu stricto extending around the Arabian Peninsula remained unknown. In the present study, P. golchini n. sp. is described from the fourth type of this shark species complex, i.e. R. acutus sensu stricto, from the Persian Gulf. Given the oioxeny of the Phoreiobothrium species and the recent phylogeny of the milk shark species complex, if the hypothesis of the allopatric cospeciation of the members of the milk shark species complex and their cestodes is considered, it seems that scolex in Phoreiobothrium can diverge more rapidly in size and morphology than strobila. Furthermore, P. rozatii n. sp. was described from one of the members of the hardnose shark species complex, i.e. Carcharhinus macloti (Müller and Henle), in the Gulf of Oman. This study provides the first data on the occurrence of the species of Phoreiobothrium in the Persian Gulf and the Gulf of Oman.


Assuntos
Cestoides/isolamento & purificação , Infecções por Cestoides/veterinária , Tubarões/classificação , Tubarões/parasitologia , Animais , Austrália , Cestoides/classificação , Doenças dos Peixes/parasitologia , Oceano Índico , Irã (Geográfico) , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa