Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(16): e2307246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039499

RESUMO

Perovskite solar cells (PSCs) with a booming high power conversion efficiency (PCE) are on their road toward industrialization. A proper design of the counter electrode (CE) with low cost, high conductivity, chemical stability, and good interface contact with the other functional layer atop the perovskite layer is vital for the overall performance of PSCs. Herein, the application of titanium nitride (TiN) is reported as a conductive medium for the printable CE in hole-conductor-free mesoscopic PSCs. TiN improves the conductivity of the CE and reduces the resistivity from 20 to 10 mΩ∙cm. TiN also improves the wettability of the CE with perovskite and enhances the back interface contact, which promotes charge collection. On the other hand, TiN is chemically stable during processing and undergoes no distinguishable chemical reaction with halide perovskite. Devices with TiN as the conductive media in the CE deliver a champion PCE of 19.01%. This work supplies a considerable choice for the CE design of PSCs toward industrial applications.

2.
Small ; 17(41): e2102300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510727

RESUMO

Nitrogen-coordinated metal-modified carbon is regarded as a novel frontier electrocatalyst in energy conversion devices. However, the construction of intrinsic defects in a carbon matrix remains a great challenge. Herein, N-coordinated magnetic metal (Fe, Co) modified porous carbon dodecahedrons (Fe/Co-NPCD) with a large surface area, rich intrinsic defects, and evenly distributed metal-Nx species are successfully synthesized via the rational design of iron precursor and the bimetallic-organic frameworks. Because of a synergistic effect between N-coordinated dual magnetic metal active sites, the Fe/Co-NPCD exhibits exceptional electrocatalytic activity and electrochemical stability. A solar cell fabricates with the Fe/Co-NPCD yields an impressive power conversion efficiency of 8.35% in dye-sensitized solar cells, superior to that of mono-metal-doped carbon-based cells and conventional Pt-based cells. Furthermore, density functional theory calculations illustrate that Fe, Co, and N doping are in favor of improving the adsorption capacity of the catalyst for I3 - species by optimizing the magnetic momentum between the magnetic metal atoms, thereby upgrading its catalytic activity. This work develops a general strategy for synthesizing a high-performance defect-rich carbon-based catalyst, and offers valuable insight into the role of magnetic metals in catalysis, which can be used to guide the design of high-performance catalysts in the energy field.

3.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946485

RESUMO

In this study, we provide the reader with an overview of quantum dot application in solar cells to replace dye molecules, where the quantum dots play a key role in photon absorption and excited charge generation in the device. The brief shows the types of quantum dot sensitized solar cells and presents the obtained results of them for each type of cell, and provides the advantages and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the next researching.

4.
Angew Chem Int Ed Engl ; 56(31): 9146-9150, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28612446

RESUMO

The ternary iron-group thiospinels of metal diindium sulfides (MIn2 S4 , M=Fe, Co, Ni) with a vertically aligned nanosheet array structure are fabricated through an in situ solvothermal method on F-doped tin oxide (FTO) substrates, which are employed as one type of platinum (Pt)-free counter electrodes (CEs) in structure-dependent dye-sensitized solar cells (DSSCs). A DSSC assembled with ternary CoIn2 S4 CE achieves an photoelectric conversion efficiency (PCE) of 8.83 %, outperforming than that of FeIn2 S4 (7.18 %) and NiIn2 S4 (8.27 %) CEs under full sunlight illumination (100 mW cm-2 , AM 1.5 G), which is also comparable with that of the Pt CE (8.19 %). Putting aside that the interconnected nanosheet array provides fast electron transfer and electrolyte diffusion channels, the highest PCE of CoIn2 S4 based DSSC results from its largest specific surface area (144.07 m2 g-1 ), providing abundant active sites and the largest electron injection efficiency from CE to electrolyte.

5.
Angew Chem Int Ed Engl ; 55(17): 5243-6, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26996147

RESUMO

All-weather solar cells are promising in solving the energy crisis. A flexible solar cell is presented that is triggered by combining an electron-enriched graphene electrode with a dye-sensitized solar cell. The new solar cell can be excited by incident light on sunny days and raindrops on rainy days, yielding an optimal solar-to-electric conversion efficiency of 6.53 % under AM 1.5 irradiation and current over microamps as well as a voltage of hundreds of microvolts by simulated raindrops. The formation of π-electron|cation electrical double-layer pseudocapacitors at graphene/raindrop interface is contributable to current and voltage outputs at switchable charging-discharging process. The new concept can guide the design of advanced all-weather solar cells.

6.
Small ; 11(9-10): 1150-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24889384

RESUMO

A novel carbon nanomaterial with aligned carbon nanotubes (CNTs) chemically bonded to a single-layered, large area graphene sheet is designed and fabricated, showing remarkable electronic and electrocatalytic properties. When the carbon nanomaterial is used as a counter electrode, the resulting dye-sensitized solar cell exhibits ≈11% enhancement of energy conversion efficiency than aligned CNT array.

7.
Chemistry ; 21(3): 1055-63, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25400022

RESUMO

Copper chalcogenide nanostructures (e.g. one-dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high-temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu(2-x)E (E = S, Se) micro-/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu(2-x)E (E = S, Se) NTs were used as counter electrodes (CE) of quantum-dot-sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25%, respectively, much higher than that of QDSSCs made with Au CE (η = 2.94%).


Assuntos
Cobre/química , Nanotubos/química , Pontos Quânticos/química , Energia Solar , Espectroscopia Dielétrica , Eletrodos , Selênio/química , Hidróxido de Sódio/química , Enxofre/química , Temperatura , Termodinâmica
8.
Chemphyschem ; 16(1): 53-65, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25367083

RESUMO

Dye-sensitized solar cells (DSSCs) have received significant attention from the scientific community since their discovery in 1991. However, the high cost and scarcity of platinum has motivated researchers to seek other suitable materials for the counter electrode of DSSCs. Owing to their exceptional properties such as high conductivity, good electrochemical activity, and low cost, carbon nanotubes (CNTs) have been considered as promising alternatives to expensive platinum (Pt) in the counter electrode of DSSCs. Herein, we provide a Minireview of the CNTs use in the counter electrode of DSSCs. A brief overview of Pt-based counter electrodes is also discussed. Particular attention is given to the recent advances of counter electrodes with CNT-based composite structures.

9.
Angew Chem Int Ed Engl ; 54(39): 11448-52, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26220170

RESUMO

The dissolution of platinum (Pt) has been one of the heart issues in developing advanced dye-sensitized solar cells (DSSCs). We present here the experimental realization of stable counter-electrode (CE) electrocatalysts by alloying Pt with transition metals for enhanced dissolution resistance to state-of-the-art iodide/triiodide (I(-)/I3(-)) redox electrolyte. Our focus is placed on the systematic studies of dissolution engineering for PtM0.05 (M=Ni, Co, Fe, Pd, Mo, Cu, Cr, and Au) alloy CE electrocatalysts along with mechanism analysis from thermodynamical aspects, yielding more negative Gibbs free energies for the dissolution reactions of transition metals. The competitive reactions between transition metals with iodide species (I3(-), I2) could protect the Pt atoms from being dissolved by redox electrolyte and therefore remain the high catalytic activity of the Pt electrode.

10.
Small ; 10(22): 4754-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24986216

RESUMO

Honeycomb-like mesoporous pyrite FeS2 microspheres, with diameters of 500-800 nm and pore sizes of 25-30 nm, are synthesized by a simple solvothermal approach. The mesoporous FeS2 microspheres are demonstrated to be an outstanding counter electrode (CE) material in quantum dot sensitized solar cells (QDSSCs) for electrocatalyzing polysulfide electrolyte regeneration. The cell using mesoporous FeS2 microspheres as CE shows 86.6% enhancement in power conversion efficiency (PCE) than the cell using traditional noble Pt CE. Furthermore, it also shows 11.4% enhancement in PCE than the cell using solid FeS2 microspheres as CE, due to the mesoporous structure facilitating better contact with polysulfide electrolyte and fast diffusion of redox couple species in electrolyte.

11.
Small ; 10(3): 484-92, 483, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23784873

RESUMO

Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.

12.
Angew Chem Int Ed Engl ; 53(40): 10799-803, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25146894

RESUMO

Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39%, fast start-up, multiple start/stop cycling, and good stability under extended irradiation.

13.
Heliyon ; 10(9): e29957, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707397

RESUMO

Hierarchical porous activated carbon/fly ash/PEDOT:PSS composites (AC:FA) for a counter electrode (CE) were created using a doctor blade technique and applied in dye sensitized solar cells. Hierarchical porous activated carbon (AC) was produced using a potassium hydroxide (KOH) activation process from cantaloupe peels (Cucumis melo L. var. cantaloupensis). AC was introduced into fly ash at various mass ratios to enhance several physical and electrochemical characteristics. Compared to bare FA, the AC:FA electrode displayed a high electrocatalytic activity for the iodide/triiodide redox (I-/I3-) reaction. The test findings show that a higher proportion of AC has an impact on a CE's catalytic activity and charge transfer resistance. The power conversion efficiency (PCE) of the dye-sensitized solar cell (DSSC) attained 5.81 % using the AC:FA CE with AC in a mass ratio of FA in 3:1 (wt./wt.), which is very near the performance of manufactured DSSC's with a platinum (Pt)-based CE (5.91 %). The AC:FA CE stands out as a strong candidate to substitute for costly Pt CEs due to its enhanced electrochemical activity and charge transfer capabilities obtained with an inexpensive and simple production procedure.

14.
Chemistry ; 19(31): 10107-10, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23780791

RESUMO

On the bright side: A solution-based strategy was developed for in situ synthesis and film deposition of Cu2ZnSnSe4 nanocrystal films (samples a-d). The obtained Cu2ZnSnSe4 nanocrystal films can be used as an effective counter-electrode (CE) material to replace Pt, and yield low-cost, high-efficiency dye-sensitized solar cells (DSSCs). The assembled solar cell devices exhibit an efficiency of 7.82 % under 1 sun irradiation (see figure).

15.
Heliyon ; 9(7): e17748, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449104

RESUMO

Hole transport material-free carbon-based perovskite solar cells (HTM-free C-PSCs) are recognized as a cost-effective and stable alternative to conventional perovskite solar cells. However, the significant energy level misalignment between the perovskite layer and the carbon counter electrode (CE) results in ineffective hole extraction and unfavorable charge recombination, which decreases the power conversion efficiency (PCE). Here, we report the introduction of metal salts (Al, Ca, and Mg) into graphite/carbon black (Gr/CB) CEs to modify the work function and enhance the hole selectivity of the CE. This modification leads to improved energy level alignment, efficient hole extraction, and reduced charge recombination. The PCE of the HTM-free C-PSC based on Al-modified Gr/CB as the CE material reached 9.91%, which is approximately 12% higher than that of devices employing unmodified Gr/CB CEs. This work demonstrates that by directly incorporating metal salts into the Gr/CB CE, the energy level alignment and hole extraction at the perovskite/carbon interface can be improved. This presents a viable method for enhancing the PCE of HTM-free C-PSCs.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37718529

RESUMO

BACKGROUND: In recent years, many semiconductor materials with unique band structures have been used as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La0.67(Ca Ba)0.33MnO3 (LCBMO) thin film is employed to act as CE in DSSCs. METHOD: The experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J0) and limit diffusion current density (Jlim) are largely enhanced by an external magnetic field. J0 increases from -0.51 mA•cm-2 to -0.65 mA•cm-2, and Jlim increases from 0.2 mA•cm-2 to 0.3 mA•cm-2 when applying a magnetic field of 0.25 T. RESULT: The fitting results of the impedance test verify that the magnetic field reduces the value of Rct. CONCLUSION: Both magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.

17.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159908

RESUMO

Dye-sensitized solar cells (DSSCs), a powerful system to convert solar energy into electrical energy, suffer from the high cost of the Pt counter electrode and photosensitizer. In this study, the dual application of waste grape skin is realized by employing the grape skin and its extract as the carbon source of the carbon-based counter electrode and photosensitizer, respectively. The ultraviolet-visible absorption and Fourier transform infrared spectroscopy verify the strong binding between the dye molecules (anthocyanins) in the extract and the TiO2 nanostructure on the photoanode, contributing to a high open-circuit voltage (VOC) value of 0.48 V for the assembled DSSC device. Moreover, the waste grape skin was subjected to pyrolysis and KOH activation and the resultant KOH-activated grape skin-derived carbon (KA-GSDC) possesses a large surface area (620.79 m2 g-1) and hierarchical porous structure, leading to a high short circuit current density (JSC) value of 1.52 mA cm-2. Additionally, the electrochemical impedance spectroscopy reveals the efficient electron transfer between the electrocatalyst and the redox couples and the slow recombination of electrolytic cations and the photo-induced electrons in the conduction band of TiO2. These merits endow the DSSC with a high photovoltaic efficiency of 0.48%, which is 33% higher than that of a common Pt-based DSSC (0.36%). The efficiency is also competitive, compared with some congeneric DSSCs based on other natural dyes and Pt counter electrode. The result confirms the feasibility of achieving the high-value application of waste grape skin in DSSCs.

18.
J Colloid Interface Sci ; 628(Pt A): 22-30, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908428

RESUMO

The development of highly-catalytic counter electrode (CE) materials is vital to the construction of quantum dot-sensitized solar cells (QDSCs) but is still challenging. Here, a novel self-assembly double-faced decorated carbon nanosheets with MOF-derived CuxS nanospheres (DF-CuxS/C NSs) were prepared as high-performance hybrid CEs for improving the catalytic activity towards polysulfide electrolytes and enhancing the performance of QDSCs. It is shown that the MOF-derived CuxS nanospheres disperse well on the surface of the carbon NSs in the obtained DF-CuxS/C NSs hybrids. Electrochemical characterization demonstrated that the DF-CuxS/C NSs with moderate mass ratio exhibited enhanced electrocatalytic activity towards the reduction of the polysulfide redox couple (Sn2-/S2-) and decreased charge transfer resistance at the interface of the CE/electrolyte. Benefitting from the merits of this novel hybrid CE, the power conversion efficiency (PCE) of the CdSeTe QDs-based QDSCs is increased to 9.39%, which is higher than the pristine carrageenan (CA)-derived CEs (5.84%) and Cu-BTC-derived CEs (7.74%). With the further optimization of the substrate, the highest PCE of 11.36% was achieved based on the Ti mesh substrate supported hybrid CE.


Assuntos
Pontos Quânticos , Carbono/química , Carragenina , Eletrodos , Eletrólitos , Pontos Quânticos/química , Sulfetos
19.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014625

RESUMO

With the recent interest in renewable energy sources, dye-sensitized solar cells (DSSCs) have received a great deal of attention as a cheaper and more sustainable alternative to silicon-based solar cells. In a DSSC, the counter electrode performs the catalytic reduction of the electrolyte and electron collection. To perform this function adequately, platinum is the preferred material currently. To reduce the dependence of the DSSC on such an expensive material, alternatives such as activated carbon (AC) and two-dimensional transition metal dichalcogenides, and more specifically, tungsten sulfide (WS2), were considered. AC has shown great potential as a material for counter electrodes, whereas WS2 has unique physiochemical properties which warrant its exploration as an energy material. In this article, we synthesized and evaluated the performance of DSSCs with AC, WS2, and AC/WS2 composite counter electrodes. It was demonstrated that the performance of the WS2/AC composite counter electrode with a 1:2 ratio of WS2 to AC shows the highest performance with an efficiency of 6.25%.

20.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578004

RESUMO

In this study, polymer-assisted dispersants are used to stabilize the nanohybrids of platinum nanoparticles (PtNPs)/carbon nanotubes (CNTs) through non-covalent bond forces. These dispersants aim to replace the florine-doped tin oxide (FTO) glass in traditional dye-sensitized solar cells (DSSCs) as counter electrodes. The large specific surface area, high conductivity, and redox potential of PtNPs/CNT nanohybrids are used as the basis to utilize them as the counter electrode material to fabricate a dye-sensitized solar cell. The conductivity results indicate that the resistance of the PtNP/CNT nanohybrid film can be reduced to 7.25 Ω/sq. When carbon nanotubes are mixed with platinum nanoparticles at a weight ratio of 5/1, the photoelectric conversion efficiency of DSSCs can reach 6.28%. When using the FTO-containing substrate as the counter electrode, its conversion efficiency indicates that the micro-/nano-hybrid material formed by PtNPs/CNTs also exhibits an excellent photoelectric conversion efficiency (8.45%) on the traditional FTO substrate. Further, a large-area dye-sensitive cell is fabricated, showing that an 8 cm × 8 cm cell has a conversion efficiency of 7.95%. Therefore, the traditional Pt counter electrode can be replaced with a PtNP/CNT nanohybrid film, which both provides dye-sensitive cells with a high photoelectric conversion efficiency and reduces costs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa