Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894209

RESUMO

Ultraviolet (UV) radiation has been widely utilized as a disinfection strategy to effectively eliminate various pathogens. The disinfection task achieves complete coverage of object surfaces by planning the motion trajectory of autonomous mobile robots and the UVC irradiation strategy. This introduces an additional layer of complexity to path planning, as every point on the surface of the object must receive a certain dose of irradiation. Nevertheless, the considerable dosage required for virus inactivation often leads to substantial energy consumption and dose redundancy in disinfection tasks, presenting challenges for the implementation of robots in large-scale environments. Optimizing energy consumption of light sources has become a primary concern in disinfection planning, particularly in large-scale settings. Addressing the inefficiencies associated with dosage redundancy, this study proposes a dose coverage planning framework, utilizing MOPSO to solve the multi-objective optimization model for planning UVC dose coverage. Diverging from conventional path planning methodologies, our approach prioritizes the intrinsic characteristics of dose accumulation, integrating a UVC light efficiency factor to mitigate dose redundancy with the aim of reducing energy expenditure and enhancing the efficiency of robotic disinfection. Empirical trials conducted with autonomous disinfecting robots in real-world settings have corroborated the efficacy of this model in deactivating viruses.

2.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631800

RESUMO

Landmine contamination is a significant problem that has devastating consequences worldwide. Unmanned aerial vehicles (UAVs) can play an important role in solving this problem. The technology has the potential to expedite, simplify, and improve the safety and efficacy of the landmine detection process prior to physical intervention. Although the process of detecting landmines in contaminated environments is systematic, it is proven to be rather costly and overwhelming, especially if prior information about the location of the lethal objects is unknown. Therefore, automation of the process to orchestrate the search for landmines has become necessary to utilize the full potential of system components, particularly the UAV, which is the enabling technology used to airborne the sensors required in the discovery stage. UAVs have a limited amount of power at their disposal. Due to the complexity of target locations, the coverage route for UAV-based surveys must be meticulously designed to optimize resource usage and accomplish complete coverage. This study presents a framework for autonomous UAV-based landmine detection to determine the coverage route for scanning the target area. It is performed by extracting the area of interest using segmentation based on deep learning and then constructing the coverage route plan for the aerial survey. Multiple coverage path patterns are used to identify the ideal UAV route. The effectiveness of the suggested framework is evaluated using several target areas of differing sizes and complexities.

3.
Sensors (Basel) ; 23(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904764

RESUMO

Coverage path planning (CPP) of multiple Dubins robots has been extensively applied in aerial monitoring, marine exploration, and search and rescue. Existing multi-robot coverage path planning (MCPP) research use exact or heuristic algorithms to address coverage applications. However, several exact algorithms always provide precise area division rather than coverage paths, and heuristic methods face the challenge of balancing accuracy and complexity. This paper focuses on the Dubins MCPP problem of known environments. Firstly, we present an exact Dubins multi-robot coverage path planning (EDM) algorithm based on mixed linear integer programming (MILP). The EDM algorithm searches the entire solution space to obtain the shortest Dubins coverage path. Secondly, a heuristic approximate credit-based Dubins multi-robot coverage path planning (CDM) algorithm is presented, which utilizes the credit model to balance tasks among robots and a tree partition strategy to reduce complexity. Comparison experiments with other exact and approximate algorithms demonstrate that EDM provides the least coverage time in small scenes, and CDM produces a shorter coverage time and less computation time in large scenes. Feasibility experiments demonstrate the applicability of EDM and CDM to a high-fidelity fixed-wing unmanned aerial vehicle (UAV) model.

4.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430561

RESUMO

Complete coverage path planning requires that the mobile robot traverse all reachable positions in the environmental map. Aiming at the problems of local optimal path and high path coverage ratio in the complete coverage path planning of the traditional biologically inspired neural network algorithm, a complete coverage path planning algorithm based on Q-learning is proposed. The global environment information is introduced by the reinforcement learning method in the proposed algorithm. In addition, the Q-learning method is used for path planning at the positions where the accessible path points are changed, which optimizes the path planning strategy of the original algorithm near these obstacles. Simulation results show that the algorithm can automatically generate an orderly path in the environmental map, and achieve 100% coverage with a lower path repetition ratio.

5.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896626

RESUMO

In this study, we present a systematic exploration of hierarchical designs for multirobot coverage path planning (MCPP) with a special focus on surveillance applications. Unlike conventional studies centered on cleaning tasks, our investigation delves into the realm of surveillance problems, specifically incorporating the sensing range (SR) factor equipped on the robots. Conventional path-based MCPP strategies considering SR, primarily rely on naive approaches, generating nodes (viewpoints) to be visited and a global path based on these nodes. Therefore, our study proposes a general MCPP framework for surveillance by dealing with path-based and area-based structures comprehensively. As the traveling salesman problem (TSP) solvers, our approach incorporates not the naive approach but renowned and powerful algorithms such as genetic algorithms (GAs), and ant colony optimization (ACO) to enhance the planning process. We devise six distinct methods within the proposed MCPP framework. Two methods adopt area-based approaches which segments areas via a hierarchical max-flow routing algorithm based on SR and the number of robots. TSP challenges within each area are tackled using a GA or ACO, and the result paths are allocated to individual robots. The remaining four methods are categorized by the path-based approaches with global-local structures such as GA-GA, GA-ACO, ACO-GA, and ACO-ACO. Unlike conventional methods which requires a global path, we further incorporate ACO- or GA-based local planning. This supplementary step at the local level enhances the quality of the path-planning results, particularly when dealing with a large number of nodes, by preventing any degradation in global path-planning outcomes. An extensive comparative analysis is conducted to evaluate the proposed framework based on execution time, total path length, and idle time. The area-based approaches tend to show a better execution time and overall path length performance compared to the path-based approaches. However, the path-based MCPP methods have the advantage of having a smaller idle time than the area-based MCPP methods. Our study finds that the proposed area-based MCPP method excels in path planning, while the proposed path-based MCPP method demonstrates superior coverage balance performance. By selecting an appropriate MCPP structure based on the specific application requirements, leveraging the strengths of both methodologies, efficient MCPP execution becomes attainable. Looking forward, our future work will focus on tailoring these MCPP structures to diverse real-world conditions, aiming to propose the most suitable approach for specific applications.

6.
J Med Syst ; 47(1): 79, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498478

RESUMO

This article presents a comprehensive review of the state-of-the-art applications and methodologies related to the use of unmanned aerial vehicles (UAVs) in the healthcare sector, with a particular focus on path planning. UAVs have gained remarkable attention in healthcare during the outbreak of COVID-19, and this study explores their potential as a viable option for medical transportation. The survey categorizes existing studies by mission type, challenges addressed, and performance metrics to provide a clearer picture of the path planning problems and potential directions for future research. It highlights the importance of addressing the path planning problem and the challenges that UAVs may face during their missions, including the UAV delivery range limitation, and discusses recent solutions in this field. The study concludes by encouraging researchers to conduct their studies in a realistic environment to reveal UAVs' real potential, usability, and feasibility in the healthcare domain.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Dispositivos Aéreos não Tripulados , Benchmarking , Surtos de Doenças , Setor de Assistência à Saúde
7.
Adv Eng Softw ; 175: 103330, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36465142

RESUMO

The COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C light to automate the disinfection processes. But performing this process in an optimum way introduces some challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the environment. In this work, both challenges are addressed with the design of a complete coverage path planning (CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN), a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed. One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on the performance of the robot navigation.

8.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236651

RESUMO

Unmanned Aerial Vehicles (UAVs) or drones presently are enhanced with miniature sensors that can provide information relative to their environment. As such, they can detect changes in temperature, orientation, altitude, geographical location, electromagnetic fluctuations, lighting conditions, and more. Combining this information properly can help produce advanced environmental awareness; thus, the drone can navigate its environment autonomously. Wireless communications can also aid in the creation of drone swarms that, combined with the proper algorithm, can be coordinated towards area coverage for various missions, such as search and rescue. Coverage Path Planning (CPP) is the field that studies how drones, independently or in swarms, can cover an area of interest efficiently. In the current work, a CPP algorithm is proposed for a swarm of drones to detect points of interest and collect information from them. The algorithm's effectiveness is evaluated under simulation results. A set of characteristics is defined to describe the coverage radius of each drone, the speed of the swarm, and the coverage path followed by it. The results show that, for larger swarm sizes, the missions require less time while more points of interest can be detected within the area. Two coverage paths are examined here-parallel lines and spiral coverage. The results depict that the parallel lines coverage is more time-efficient since the spiral increases the required time by an average of 5% in all cases for the same number of detected points of interest.


Assuntos
Altitude , Dispositivos Aéreos não Tripulados
9.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632041

RESUMO

Due to the ever-increasing industrial activity, humans and the environment suffer from deteriorating air quality, making the long-term monitoring of air particle indicators essential. The advances in unmanned aerial vehicles (UAVs) offer the potential to utilize UAVs for various forms of monitoring, of which air quality data acquisition is one. Nevertheless, most current UAV-based air monitoring suffers from a low payload, short endurance, and limited range, as they are primarily dependent on rotary aerial vehicles. In contrast, a fixed-wing UAV may be a better alternative. Additionally, one of the most critical modules for 3D profiling of a UAV system is path planning, as it directly impacts the final results of the spatial coverage and temporal efficiency. Therefore, this work focused on developing 3D coverage path planning based upon current commercial ground control software, where the method mainly depends on the Boustrophedon and Dubins paths. Furthermore, a user interface was also designed for easy accessibility, which provides a generalized tool module that links up the proposed algorithm, the ground control software, and the flight controller. Simulations were conducted to assess the proposed methods. The result showed that the proposed methods outperformed the existing coverage paths generated by ground control software, as it showed a better coverage rate with a sampling density of 50 m.


Assuntos
Poluição do Ar , Tecnologia de Sensoriamento Remoto , Algoritmos , Humanos , Tecnologia de Sensoriamento Remoto/métodos
10.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336467

RESUMO

This paper deals with the problems and the solutions of fast coverage path planning (CPP) for multiple UAVs. Through this research, the problem is solved and analyzed with both a software framework and algorithm. The implemented algorithm generates a back-and-forth path based on the onboard sensor footprint. In addition, three methods are proposed for the individual path assignment: simple bin packing trajectory planner (SIMPLE-BINPAT); bin packing trajectory planner (BINPAT); and Powell optimized bin packing trajectory planner (POWELL-BINPAT). The three methods use heuristic algorithms, linear sum assignment, and minimization techniques to optimize the planning task. Furthermore, this approach is implemented with applicable software to be easily used by first responders such as police and firefighters. In addition, simulation and real-world experiments were performed using UAVs with RGB and thermal cameras. The results show that POWELL-BINPAT generates optimal UAV paths to complete the entire mission in minimum time. Furthermore, the computation time for the trajectory generation task decreases compared to other techniques in the literature. This research is part of a real project funded by the H2020 FASTER Project, with grant ID: 833507.


Assuntos
Algoritmos , Software , Simulação por Computador
11.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501881

RESUMO

This paper proposes the design of the communications, control systems, and navigation algorithms of a multi-UAV system focused on remote sensing operations. A new controller based on a compensator and a nominal controller is designed to dynamically regulate the UAVs' attitude. The navigation system addresses the multi-region coverage trajectory planning task using a new approach to solve the TSP-CPP problem. The navigation algorithms were tested theoretically, and the combination of the proposed navigation techniques and control strategy was simulated through the Matlab SimScape platform to optimize the controller's parameters over several iterations. The results reveal the robustness of the controller and optimal performance of the route planner.

12.
Sensors (Basel) ; 22(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35161979

RESUMO

The coverage path planning (CPP) algorithms aim to cover the total area of interest with minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and execution time. Significant research has been done in robotics, particularly for multi-unmanned unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems. This paper presents a review of the early-stage CPP methods in the robotics field. Furthermore, we discuss multi-UAV CPP strategies and focus on energy-saving CPP algorithms. Likewise, we aim to present a comparison between energy efficient CPP algorithms and directions for future research.


Assuntos
Robótica , Dispositivos Aéreos não Tripulados , Algoritmos , Conservação de Recursos Energéticos , Fenômenos Físicos
13.
Sensors (Basel) ; 21(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34770670

RESUMO

Coverage path planning (CPP) is a field of study which objective is to find a path that covers every point of a certain area of interest. Recently, the use of Unmanned Aerial Vehicles (UAVs) has become more proficient in various applications such as surveillance, terrain coverage, mapping, natural disaster tracking, transport, and others. The aim of this paper is to design efficient coverage path planning collision-avoidance capable algorithms for single or multi UAV systems in cluttered urban environments. Two algorithms are developed and explored: one of them plans paths to cover a target zone delimited by a given perimeter with predefined coverage height and bandwidth, using a boustrophedon flight pattern, while the other proposed algorithm follows a set of predefined viewpoints, calculating a smooth path that ensures that the UAVs pass over the objectives. Both algorithms have been developed for a scalable number of UAVs, which fly in a triangular deformable leader-follower formation with the leader at its front. In the case of an even number of UAVs, there is no leader at the front of the formation and a virtual leader is used to plan the paths of the followers. The presented algorithms also have collision avoidance capabilities, powered by the Fast Marching Square algorithm. These algorithms are tested in various simulated urban and cluttered environments, and they prove capable of providing safe and smooth paths for the UAV formation in urban environments.

14.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467417

RESUMO

Different practical applications have emerged in the last few years, requiring periodic and detailed inspections to verify possible structural changes. Inspections using Unmanned Aerial Vehicles (UAVs) should minimize flight time due to battery time restrictions and identify the terrain's topographic features. In this sense, Coverage Path Planning (CPP) aims at finding the best path to coverage of a determined area respecting the operation's restrictions. Photometric information from the terrain is used to create routes or even refine paths already created. Therefore, this research's main contribution is developing a methodology that uses a metaheuristic algorithm based on point cloud data to inspect slope and dams structures. The technique was applied in a simulated and real scenario to verify its effectiveness. The results showed an increasing 3D reconstructions' quality observing optimizing photometric and mission time criteria.

15.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562647

RESUMO

Path planning is one of the most important issues in the robotics field, being applied in many domains ranging from aerospace technology and military tasks to manufacturing and agriculture. Path planning is a branch of autonomous navigation. In autonomous navigation, dynamic decisions about the path have to be taken while the robot moves towards its goal. Among the navigation area, an important class of problems is Coverage Path Planning (CPP). The CPP technique is associated with determining a collision-free path that passes through all viewpoints in a specific area. This paper presents a method to perform CPP in 3D environment for Unmanned Aerial Vehicles (UAVs) applications, namely 3D dynamic for CPP applications (3DD-CPP). The proposed method can be deployed in an unknown environment through a combination of linear optimization and heuristics. A model to estimate cost matrices accounting for UAV power usage is proposed and evaluated for a few different flight speeds. As linear optimization methods can be computationally demanding to be used on-board a UAV, this work also proposes a distributed execution of the algorithm through fog-edge computing. Results showed that 3DD-CPP had a good performance in both local execution and fog-edge for different simulated scenarios. The proposed heuristic is capable of re-optimization, enabling execution in environments with local knowledge of the environments.

16.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922638

RESUMO

Professional cleaning and safe social distance monitoring are often considered as demanding, time-consuming, repetitive, and labor-intensive tasks with the risk of getting exposed to the virus. Safe social distance monitoring and cleaning are emerging problems solved through robotics solutions. This research aims to develop a safe social distance surveillance system on an intra-reconfigurable robot with a multi-robot cleaning system for large population environments, like office buildings, hospitals, or shopping malls. We propose an adaptive multi-robot cleaning strategy based on zig-zag-based coverage path planning that works in synergy with the human interaction heat map generated by safe social distance monitoring systems. We further validate the proposed adaptive velocity model's efficiency for the multi-robot cleaning systems regarding time consumption and energy saved. The proposed method using sigmoid-based non-linear function has shown superior performance with 14.1 percent faster and energy consumption of 11.8 percent less than conventional cleaning methods.


Assuntos
Robótica , Humanos
17.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922822

RESUMO

Efforts related to minimizing the environmental burden caused by agricultural activities and increasing economic efficiency are key contemporary drivers in the precision agriculture domain. Controlled Traffic Farming (CTF) techniques are being applied against soil compaction creation, using the on-line optimization of trajectory planning for soil-sensitive field operations. The research presented in this paper aims at a proof-of-concept solution with respect to optimizing farm machinery trajectories in order to minimize the environmental burden and increase economic efficiency. As such, it further advances existing CTF solutions by including (1) efficient plot divisions in 3D, (2) the optimization of entry and exit points of both plot and plot segments, (3) the employment of more machines in parallel and (4) obstacles in a farm machinery trajectory. The developed algorithm is expressed in terms of unified modeling language (UML) activity diagrams as well as pseudo-code. Results were visualized in 2D and 3D to demonstrate terrain impact. Verifications were conducted at a fully operational commercial farm (Rostenice, the Czech Republic) against second-by-second sensor measurements of real farm machinery trajectories.

18.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635411

RESUMO

Area monitoring and surveillance are some of the main applications for Unmanned Aerial Vehicle (UAV) networks. The scientific problem that arises from this application concerns the way the area must be covered to fulfill the mission requirements. One of the main challenges is to determine the paths for the UAVs that optimize the usage of resources while minimizing the mission time. Different approaches rely on area partitioning strategies. Depending on the size and complexity of the area to monitor, it is possible to decompose it exactly or approximately. This paper proposes a partitioning method called Parallel Partitioning along a Side (PPS). In the proposed method, grid-mapping and grid-subdivision of the area, as well as area partitioning are performed to plan the UAVs path. An extra challenge, also tackled in this work, is the presence of non-flying zones (NFZs). These zones are areas that UAVs must not cover or pass over it. The proposal is extensively evaluated, in comparison with existing approaches, to show that it enables UAVs to plan paths with minimum energy consumption, number of turns and completion time while at the same time increases the quality of coverage.

19.
Sensors (Basel) ; 19(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557969

RESUMO

To cover an area of interest by an autonomous vehicle, such as an Unmanned Aerial Vehicle (UAV), planning a coverage path which guides the unit to cover the area is an essential process. However, coverage path planning is often problematic, especially when the boundary of the area is complicated and the area contains several obstacles. A common solution for this situation is to decompose the area into disjoint convex sub-polygons and to obtain coverage paths for each sub-polygon using a simple back-and-forth pattern. Aligned with the solution approach, we propose a new convex decomposition method which is simple and applicable to any shape of target area. The proposed method is designed based on the idea that, given an area of interest represented as a polygon, a convex decomposition of the polygon mainly occurs at the points where an interior angle between two edges of the polygon is greater than 180 degrees. The performance of the proposed method is demonstrated by comparison with existing convex decomposition methods using illustrative examples.

20.
Sensors (Basel) ; 18(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970818

RESUMO

In this paper, a new method for planning coverage paths for fixed-wing Unmanned Aerial Vehicle (UAV) aerial surveys is proposed. Instead of the more generic coverage path planning techniques presented in previous literature, this method specifically concentrates on decreasing flight time of fixed-wing aircraft surveys. This is achieved threefold: by the addition of wind to the survey flight time model, accounting for the fact fixed-wing aircraft are not constrained to flight within the polygon of the region of interest, and an intelligent method for decomposing the region into convex polygons conducive to quick flight times. It is shown that wind can make a huge difference to survey time, and that flying perpendicular can confer a flight time advantage. Small UAVs, which have very slow airspeeds, can very easily be flying in wind, which is 50% of their airspeed. This is why the technique is shown to be so effective, due to the fact that ignoring wind for small, slow, fixed-wing aircraft is a considerable oversight. Comparing this method to previous techniques using a Monte Carlo simulation on randomised polygons shows a significant reduction in flight time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa