RESUMO
All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.
Assuntos
Animais Lactentes/fisiologia , Transtornos de Deglutição/patologia , Rede Nervosa/fisiologia , Faringe/patologia , Animais , Comportamento/fisiologia , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Humanos , Faringe/fisiologiaRESUMO
Changes in gene regulatory elements play critical roles in human phenotypic divergence. However, identifying the base-pair changes responsible for the distinctive morphology of Homo sapiens remains challenging. Here, we report a noncoding single-nucleotide polymorphism (SNP), rs41298798, as a potential causal variant contributing to the morphology of the skull base and vertebral structures found in Homo sapiens. Screening for differentially regulated genes between Homo sapiens and extinct relatives revealed 13 candidate genes associated with basicranial development, with TBX1, implicated in DiGeorge syndrome, playing a pivotal role. Epigenetic markers and in silico analyses prioritized rs41298798 within a TBX1 intron for functional validation. CRISPR editing revealed that the 41-base-pair region surrounding rs41298798 modulates gene expression at 22q11.21. The derived allele of rs41298798 acts as an allele-specific enhancer mediated by E2F1, resulting in increased TBX1 expression levels compared to the ancestral allele. Tbx1-knockout mice exhibited skull base and vertebral abnormalities similar to those seen in DiGeorge syndrome. Phenotypic differences associated with TBX1 deficiency are observed between Homo sapiens and Neanderthals (Homo neanderthalensis). In conclusion, the regulatory divergence of TBX1 contributes to the formation of skull base and vertebral structures found in Homo sapiens.
Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas com Domínio T , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Animais , Camundongos , Síndrome de DiGeorge/genética , Homem de Neandertal/genética , Camundongos Knockout , Crânio/anatomia & histologia , Alelos , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/anormalidades , Cromossomos Humanos Par 22/genética , FenótipoRESUMO
The BAF chromatin remodeler regulates lineage commitment including cranial neural crest cell (CNCC) specification. Variants in BAF subunits cause Coffin-Siris syndrome (CSS), a congenital disorder characterized by coarse craniofacial features and intellectual disability. Approximately 50% of individuals with CSS harbor variants in one of the mutually exclusive BAF subunits, ARID1A/ARID1B. While Arid1a deletion in mouse neural crest causes severe craniofacial phenotypes, little is known about the role of ARID1A in CNCC specification. Using CSS-patient-derived ARID1A+/- induced pluripotent stem cells to model CNCC specification, we discovered that ARID1A-haploinsufficiency impairs epithelial-to-mesenchymal transition (EMT), a process necessary for CNCC delamination and migration from the neural tube. Furthermore, wild-type ARID1A-BAF regulates enhancers associated with EMT genes. ARID1A-BAF binding at these enhancers is impaired in heterozygotes while binding at promoters is unaffected. At the sequence level, these EMT enhancers contain binding motifs for ZIC2, and ZIC2 binding at these sites is ARID1A-dependent. When excluded from EMT enhancers, ZIC2 relocates to neuronal enhancers, triggering aberrant neuronal gene activation. In mice, deletion of Zic2 impairs NCC delamination, while ZIC2 overexpression in chick embryos at post-migratory neural crest stages elicits ectopic delamination from the neural tube. These findings reveal an essential ARID1A-ZIC2 axis essential for EMT and CNCC delamination.
Assuntos
Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Face , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço , Crista Neural , Fatores de Transcrição , Crista Neural/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Deficiência Intelectual/genética , Micrognatismo/genética , Animais , Face/anormalidades , Face/embriologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Pescoço/anormalidades , Pescoço/embriologia , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Haploinsuficiência , Elementos Facilitadores Genéticos/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/patologia , Regulação da Expressão Gênica no Desenvolvimento , Anormalidades MúltiplasRESUMO
The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.
Assuntos
Suturas Cranianas , Crânio , Camundongos , Animais , Células-Tronco , Crista Neural , MesodermaRESUMO
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Assuntos
Neurônios Eferentes , Nervo Vago , Nervo Vago/metabolismo , Neurônios/fisiologiaRESUMO
Craniosynostosis (CS) is the most common congenital cranial anomaly. Several Mendelian forms of syndromic CS are well described, but a genetic etiology remains elusive in a substantial fraction of probands. Analysis of exome sequence data from 526 proband-parent trios with syndromic CS identified a marked excess (observed 98, expected 33, p = 4.83 × 10-20) of damaging de novo variants (DNVs) in genes highly intolerant to loss-of-function variation (probability of LoF intolerance > 0.9). 30 probands harbored damaging DNVs in 21 genes that were not previously implicated in CS but are involved in chromatin modification and remodeling (4.7-fold enrichment, p = 1.1 × 10-11). 17 genes had multiple damaging DNVs, and 13 genes (CDK13, NFIX, ADNP, KMT5B, SON, ARID1B, CASK, CHD7, MED13L, PSMD12, POLR2A, CHD3, and SETBP1) surpassed thresholds for genome-wide significance. A recurrent gain-of-function DNV in the retinoic acid receptor alpha (RARA; c.865G>A [p.Gly289Arg]) was identified in two probands with similar CS phenotypes. CS risk genes overlap with those identified for autism and other neurodevelopmental disorders, are highly expressed in cranial neural crest cells, and converge in networks that regulate chromatin modification, gene transcription, and osteoblast differentiation. Our results identify several CS loci and have major implications for genetic testing and counseling.
Assuntos
Craniossinostoses , Tretinoína , Humanos , Mutação , Craniossinostoses/genética , Regulação da Expressão Gênica , Cromatina , Predisposição Genética para DoençaRESUMO
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Assuntos
Evolução Biológica , Crânio , Animais , Humanos , Vertebrados , Crista Neural/metabolismo , Biologia do Desenvolvimento , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Of all the cell types arising from the neural crest, ectomesenchyme is likely the most unusual. In contrast to the neuroglial cells generated by neural crest throughout the embryo, consistent with its ectodermal origin, cranial neural crest-derived cells (CNCCs) generate many connective tissue and skeletal cell types in common with mesoderm. Whether this ectoderm-derived mesenchyme (ectomesenchyme) potential reflects a distinct developmental origin from other CNCC lineages, and/or epigenetic reprogramming of the ectoderm, remains debated. Whereas decades of lineage tracing studies have defined the potential of CNCC ectomesenchyme, these are being revisited by modern genetic techniques. Recent work is also shedding light on the extent to which intrinsic and extrinsic cues determine ectomesenchyme potential, and whether maintenance or reacquisition of CNCC multipotency influences craniofacial repair.
Assuntos
Mesoderma , Crista Neural , Crista Neural/metabolismo , Ectoderma/metabolismo , Embrião de MamíferosRESUMO
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.
Assuntos
Ectoderma , Crânio , Animais , Humanos , Vertebrados , Diferenciação Celular , Transdução de Sinais , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.
Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Crista Neural , Gânglio Trigeminal , Animais , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/embriologia , Gânglio Trigeminal/citologia , Embrião de Galinha , Crista Neural/metabolismo , Crista Neural/embriologia , Crista Neural/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Neurônios/metabolismo , Neurogênese/genética , Movimento Celular , Linhagem da CélulaRESUMO
Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure. Furthermore, neuroepithelial cell shape and architecture were disrupted within the cranial neural tube in Lats1/2 DCKO mutants. RNA sequencing of embryonic neural tubes revealed increased TGFB signaling in Lats1/2 DCKO mutants. Moreover, markers of epithelial-to-mesenchymal transition (EMT) were upregulated in the cranial neural tube. Inactivation of Hippo signaling downstream effectors, Yap and Taz, suppressed neuroepithelial defects, aberrant EMT and TGFB upregulation in Lats1/2 DCKO embryos, indicating that LATS1/2 function via YAP and TAZ. Our findings reveal important roles for Hippo signaling in modulating TGFB signaling during neural crest EMT.
Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Transição Epitelial-Mesenquimal/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Crânio , Fator de Crescimento Transformador beta/metabolismoRESUMO
A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Craniossinostoses/metabolismo , Osteogênese , Crânio/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses/embriologia , Craniossinostoses/genética , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Crânio/metabolismoRESUMO
Certain cranial neural crest cells are uniquely endowed with the ability to make skeletal cell types otherwise only derived from mesoderm. As these cells migrate into the pharyngeal arches, they downregulate neural crest specifier genes and upregulate so-called ectomesenchyme genes that are characteristic of skeletal progenitors. Although both external and intrinsic factors have been proposed as triggers of this transition, the details remain obscure. Here, we report the Nr2f nuclear receptors as intrinsic activators of the ectomesenchyme program: zebrafish nr2f5 single and nr2f2;nr2f5 double mutants show marked delays in upregulation of ectomesenchyme genes, such as dlx2a, prrx1a, prrx1b, sox9a, twist1a and fli1a, and in downregulation of sox10, which is normally restricted to early neural crest and non-ectomesenchyme lineages. Mutation of sox10 fully rescued skeletal development in nr2f5 single but not nr2f2;nr2f5 double mutants, but the initial ectomesenchyme delay persisted in both. Sox10 perdurance thus antagonizes the recovery but does not explain the impaired ectomesenchyme transition. Unraveling the mechanisms of Nr2f function will help solve the enduring puzzle of how cranial neural crest cells transition to the skeletal progenitor state.
Assuntos
Placa Neural , Peixe-Zebra , Animais , Peixe-Zebra/genética , Crista Neural , Mesoderma , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Due to the hierarchical structure of the tree of life, closely related species often resemble each other more than distantly related species; a pattern termed phylogenetic signal. Numerous univariate statistics have been proposed as measures of phylogenetic signal for single phenotypic traits, but the study of phylogenetic signal for multivariate data, as is common in modern biology, remains challenging. Here we introduce a new method to explore phylogenetic signal in multivariate phenotypes. Our approach decomposes the data into linear combinations with maximal (or minimal) phylogenetic signal, as measured by Blomberg's K. The loading vectors of these phylogenetic components or K-components can be biologically interpreted, and scatterplots of the scores can be used as a low-dimensional ordination of the data that maximally (or minimally) preserves phylogenetic signal. We present algebraic and statistical properties, along with two new summary statistics, KA and KG, of phylogenetic signal in multivariate data. Simulation studies showed that KA and KG have higher statistical power than the previously suggested statistic Kmult, especially if phylogenetic signal is low or concentrated in a few trait dimensions. In two empirical applications to vertebrate cranial shape (crocodyliforms and papionins), we found statistically significant phylogenetic signal concentrated in a few trait dimensions. The finding that phylogenetic signal can be highly variable across the dimensions of multivariate phenotypes has important implications for current maximum likelihood approaches to phylogenetic signal in multivariate data.
RESUMO
The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the PNS are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases [progressive supranuclear palsy (PSP), n = 15; Alzheimer's disease (AD), n = 18; chronic traumatic encephalopathy (CTE), n = 5; and corticobasal degeneration (CBD), n = 6; Pick's disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy (LNT), n = 1] using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88%); IX/X: 10/11 (91%); and XII: 6/6 (100%); anterior spinal roots: 10/10 (100%). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE and Pick's disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.
Assuntos
Doença de Alzheimer , Doença de Pick , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Doença de Pick/patologia , Doença de Alzheimer/patologia , Tauopatias/patologia , Nervos Espinhais , BiomarcadoresRESUMO
BACKGROUND: Embryonic craniofacial development involves several cellular and molecular events that are evolutionarily conserved among vertebrates. Vertebrate models such as mice and zebrafish have been used to investigate the molecular and cellular etiologies underlying human craniofacial disorders, including orofacial clefts. However, the molecular mechanisms underlying embryonic development in these two species are unknown. Therefore, elucidating the shared mechanisms of craniofacial development between disease models is crucial to understanding the underlying mechanisms of phenotypes in individual species. RESULTS: We selected mice and zebrafish as model organisms to compare various events during embryonic craniofacial development. We identified genes (Sox9, Zfhx3 and 4, Cjun, and Six1) exhibiting similar temporal expression patterns between these species through comprehensive and stage-matched gene expression analyses. Expression analysis revealed similar gene expression in hypothetically corresponding tissues, such as the mice palate and zebrafish ethmoid plate. Furthermore, loss-of-function analysis of Zfhx4/zfhx4, a causative gene of human craniofacial anomalies including orofacial cleft, in both species resulted in deformed skeletal elements such as the palatine and ethmoid plate in mice and zebrafish, respectively. CONCLUSIONS: These results demonstrate that these disease models share common molecular mechanisms, highlighting their usefulness in modeling craniofacial defects in humans.
RESUMO
The nature of the global signal, i.e. the average signal from sequential functional imaging scans of the brain or the cortex, is not well understood, but is thought to include vascular and neural components. Using resting state data, we report on the strong association between the global signal and the average signal from the part of the volume that includes the cranial bone and subdural vessels and venous collectors, separated from each other and the subdural space by multispectral segmentation procedures. While subdural vessels carried a signal with a phase delay relative to the cortex, the association with the cortical signal was strongest in the parts of the scan corresponding to the laminae of the cranial bone, reaching 80% shared variance in some individuals. These findings suggest that in resting state data vascular components may play a prominent role in the genesis of fluctuations of the global signal. Evidence from other studies on the existence of neural sources of the global signal suggests that it may reflect the action of multiple mechanisms (including cerebrovascular reactivity and autonomic control) concurrently acting to regulate global cerebral perfusion.
Assuntos
Imageamento por Ressonância Magnética , Crânio , Humanos , Imageamento por Ressonância Magnética/métodos , Crânio/diagnóstico por imagem , Masculino , Adulto , Feminino , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Circulação Cerebrovascular/fisiologiaRESUMO
Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.
Assuntos
Desenvolvimento Ósseo , Proteínas de Homeodomínio/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Síndrome Brânquio-Otorrenal/embriologia , Síndrome Brânquio-Otorrenal/genética , Núcleo Celular/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Metaloproteínas/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Ativação Transcricional , Proteínas de Xenopus/genética , Xenopus laevisRESUMO
Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.
Assuntos
Proteínas da Matriz do Complexo de Golgi/metabolismo , Crânio/crescimento & desenvolvimento , Crânio/metabolismo , Animais , Calcificação Fisiológica , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Camundongos , Camundongos Knockout , Crista Neural/metabolismo , Osteoblastos , Osteogênese , ProteômicaRESUMO
PURPOSE: To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). METHODS: We coupled phenotyping with exome or genome sequencing of 467 probands (550 affected and 1108 total individuals) with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. RESULTS: Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. CONCLUSION: This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.