Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(28): 15328-15334, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885188

RESUMO

Organic electrical gas sensors have been developed for many decades because of their high sensitivity and selectivity. However, their industrialization is severely hindered by their intrinsic humidity susceptibility and poor recovery. Conventional organic sensory materials can only operate at room temperature owing to their weak intermolecular interactions. Herein, we demonstrate using a croconate polymer (poly-4,4'-biphenylcroconate) that the "ion-in-conjugation" concept enables organic gas sensors to operate at 100 °C and 70 % relative humidity with almost complete recovery. The fabricated sensor had a parts-per-billion (ppb) detection limit for NO2 and showed the highest sensitivity (2526 ppm-1 at 40 ppb) of all reported NO2 chemiresistive sensors. Furthermore, charge transfer increased with temperature. Theoretical calculations and in situ FTIR spectra confirmed the ion-in-conjugation-inspired hydrogen bond as key for excellent sensitivity. A NO2 alarm system was assembled to demonstrate the feasibility of this sensor.

2.
J Res Natl Bur Stand (1977) ; 87(3): 257-260, 1982.
Artigo em Inglês | MEDLINE | ID: mdl-34566084

RESUMO

Based on crystallographic analysis and results of the solution electronchemistry, a mechanism for electron conduction is proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa