Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2205792119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972435

RESUMO

Increasing cropping system diversity has great potential to address environmental problems associated with modern agriculture, such as erosion, soil carbon loss, nutrient runoff, water pollution, and loss of biodiversity. As with other agricultural sciences, plant breeding has primarily been conducted in the context of dominant monoculture cropping systems, with little focus on multicrop systems. Multicrop systems have increased temporal and/or spatial diversity and include a diverse set of crops and practices. In order to support a transition to multicrop systems, plant breeders must shift their breeding programs and objectives to better represent more diverse systems, including diverse rotations, alternate-season crops, ecosystem service crops, and intercropping systems. The degree to which breeding methods need to change will depend on the cropping system context in question. Plant breeding alone, however, cannot drive adoption of multicrop systems. Alongside shifts in breeding approaches, changes are needed within broader research, private sector, and policy contexts. These changes include policies and investments that support a transition to multicrop systems, increased collaboration across disciplines to support cropping system development, and leadership from both the public and private sectors to develop and promote adoption of new cultivars.


Assuntos
Ecossistema , Melhoramento Vegetal , Agricultura , Solo , Biodiversidade , Produtos Agrícolas
2.
Proc Natl Acad Sci U S A ; 120(14): e2205768119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972434

RESUMO

The resilience and sustainability of food systems depend on crop diversity. It is used by breeders to produce new and better varieties, and by farmers to respond to new challenges or demands and to spread risk. However, crop diversity can only be used if it has been conserved, can be identified as the solution for a given problem, and is available. As the ways in which crop diversity is used in research and breeding change and expand, the global conservation system for crop diversity must keep pace; it must provide not only the biological materials themselves, but also the relevant information presented in a comprehensive and coherent way-all while ensuring equitable access and benefit sharing. Here we explore the evolving priorities for global efforts to safeguard and make available the diversity of the world's crops through ex situ genetic resource collections. We suggest that collections held by academic institutions and other holders that are not standard gene banks should be better integrated in global efforts and decision-making to conserve genetic resources. We conclude with key actions that we suggest should be taken to ensure that crop diversity collections of all types are able to fulfill their role to foster more diverse, equitable, resilient, and sustainable food systems globally.


Assuntos
Conservação dos Recursos Naturais , Melhoramento Vegetal , Produtos Agrícolas/genética , Responsabilidade Social
3.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549269

RESUMO

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Europa (Continente) , Produtos Agrícolas , Agricultura/métodos
4.
Proc Natl Acad Sci U S A ; 117(52): 33351-33357, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318205

RESUMO

The contributions of crop wild relatives (CWR) to food security depend on their conservation and accessibility for use. The United States contains a diverse native flora of CWR, including those of important cereal, fruit, nut, oil, pulse, root and tuber, and vegetable crops, which may be threatened in their natural habitats and underrepresented in plant conservation repositories. To determine conservation priorities for these plants, we developed a national inventory, compiled occurrence information, modeled potential distributions, and conducted threat assessments and conservation gap analyses for 600 native taxa. We found that 7.1% of the taxa may be critically endangered in their natural habitats, 50% may be endangered, and 28% may be vulnerable. We categorized 58.8% of the taxa as of urgent priority for further action, 37% as high priority, and 4.2% as medium priority. Major ex situ conservation gaps were identified for 93.3% of the wild relatives (categorized as urgent or high priority), with 83 taxa absent from conservation repositories, while 93.1% of the plants were equivalently prioritized for further habitat protection. Various taxonomic richness hotspots across the US represent focal regions for further conservation action. Related needs include facilitating greater access to and characterization of these cultural-genetic-natural resources and raising public awareness of their existence, value, and plight.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas/fisiologia , Produtos Agrícolas/classificação , Geografia , Helianthus/fisiologia , Estados Unidos
5.
Yi Chuan ; 45(9): 741-753, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731229

RESUMO

The impending global climate change presents significant challenges to agricultural production. It is imperative to find approaches to ensure sustained growth in food production while reducing agricultural input, in order to meet the needs of worldwide people for nutritious food supply. One of the effective strategies to address this challenge is still the development of new crop varieties with high yield, stable yield, environmental friendliness and rich nutrition. The creation of new crop cultivars depends largely on the expansion of genetic resources and the innovation of breeding techniques. De novo domestication is an innovative breeding strategy for developing new crop varieties. It involves utilizing undomesticated or semi-domesticated plants with desirable traits as founder species for breeding. The process involves rapid domestication of wild plants through the redesign of agronomic traits and the introduction of domestication genes to meet diverse human needs. In this review, we overview the history of crop domestication and genetic improvement, clarify the necessity of enriching crop diversity, and emphasize the significance of wild plants' genetic diversity in expanding the scope for crop redesign. Breeding strategy innovation is the key to accelerate crop breeding. We also discuss the feasibility and prospects of rapid developing new crops through de novo domestication.


Assuntos
Domesticação , Melhoramento Vegetal , Humanos , Agricultura , Produtos Agrícolas/genética , Fenótipo
6.
Hist Philos Life Sci ; 45(3): 33, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436519

RESUMO

This article examines crop varietal standardization in the United States. Numerous committees formed in the early twentieth century to address the problem of nomenclatural rules in the horticultural and agricultural industries. Making shared reference to a varietal name proved a difficult proposition for seed-borne crops because plant conformity tended to change in the hands of different breeders. Moreover, scientific and commercial opinions diverged on the value of deviations within crop varieties. I review the function of descriptive difference in the seed trade and in the framework of evolutionary theory before examining the institutional history of varietal standardization. Pimento peppers are used to represent how vegetables were treated differently than cereals. Lack of stability within a popular pimento variety caused problems for food packers in middle Georgia, which public breeders addressed by releasing new peppers. To conclude, the article questions the role of taxonomy in intellectual property, as breeding history and yield became defining attributes for making varietal distinctions.


Assuntos
Agricultura , Produtos Agrícolas , Estados Unidos
7.
New Phytol ; 233(1): 84-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515358

RESUMO

Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding evident declines in crop diversity have been raised for over a century, the magnitude, trajectory, drivers and significance of these losses remain insufficiently understood. We outline the various definitions, measurements, scales and sources of information on crop genetic erosion. We then provide a synthesis of evidence regarding changes in the diversity of traditional crop landraces on farms, modern crop cultivars in agriculture, crop wild relatives in their natural habitats and crop genetic resources held in conservation repositories. This evidence indicates that marked losses, but also maintenance and increases in diversity, have occurred in all these contexts, the extent depending on species, taxonomic and geographic scale, and region, as well as analytical approach. We discuss steps needed to further advance knowledge around the agricultural and societal significance, as well as conservation implications, of crop genetic erosion. Finally, we propose actions to mitigate, stem and reverse further losses of crop diversity.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas , Agricultura , Produtos Agrícolas/genética , Ecossistema
8.
Ecol Appl ; 32(8): e2699, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35751512

RESUMO

Urbanization poses a major threat to biodiversity and food security, as expanding cities, especially in the Global South, increasingly compete with natural and agricultural lands. However, the impact of urban expansion on agricultural biodiversity in tropical regions is overlooked. Here we assess how urbanization affects the functional response of farmland bees, the most important pollinators for crop production. We sampled bees across three seasons in 36 conventional vegetable-producing farms spread along an urbanization gradient in Bengaluru, an Indian megacity. We investigated how landscape and local environmental drivers affected different functional traits (sociality, nesting behavior, body size, and specialization) and functional diversity (functional dispersion) of bee communities. We found that the functional responses to urbanization were trait specific with more positive than negative effects of gray area (sealed surfaces and buildings) on species richness, functional diversity, and abundance of most functional groups. As expected, larger, solitary, cavity-nesting, and, surprisingly, specialist bees benefited from urbanization. In contrast to temperate cities, the abundance of ground nesters increased in urban areas, presumably because larger patches of bare soil were still available beside roads and buildings. However, overall bee abundance and the abundance of social bees (85% of all bees) decreased with urbanization, threatening crop pollination. Crop diversity promotes taxonomic and functional diversity of bee communities. Locally, flower resources promote the abundance of all functional groups, and natural vegetation can maintain diverse pollinator communities throughout the year, especially during the noncropping season. However, exotic plants decrease functional diversity and bee specialization. To safeguard bees and their pollination services in urban farms, we recommend (1) preserving seminatural vegetation (hedges) around cropping fields to provide nesting opportunities for aboveground nesters, (2) promoting farm-level crop diversification of beneficial crops (e.g., pulses, vegetables, and spices), (3) maintaining native natural vegetation along field margins, and (4) controlling and removing invasive exotic plants that disrupt native plant-pollinator interactions. Overall, our results suggest that urban agriculture can maintain functionally diverse bee communities and, if managed in a sustainable manner, be used to develop win-win solutions for biodiversity conservation of pollinators and food security in and around cities.


Assuntos
Biodiversidade , Polinização , Abelhas , Animais , Fazendas , Polinização/fisiologia , Urbanização , Produtos Agrícolas , Ecossistema
9.
Plant Dis ; 106(5): 1341-1349, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34907800

RESUMO

Septoria tritici blotch (STB) is among the most devastating diseases in European wheat production. In recent years, there has been increased interest in using cultivar mixtures as part of an integrated control strategy against diseases. This study investigated different cultivar mixtures for their ability to control STB across three years and at seven trial sites in Denmark with a range of fungicide strategies, yielding a total of 194 individual cultivar mixture combinations. The mixtures were composed of two, three, or four cultivars that were either similar or contrasting in their susceptibility to STB. Across all trials, the cultivar mixtures reduced disease severity significantly, by 14% compared with the component cultivars grown in monoculture. The reductions were larger when the disease pressure was high and when the mixtures included more cultivars. Mixtures composed of four cultivars reduced disease severity significantly, by 24%. Across all trials, cultivar mixtures significantly increased yield by 2% compared with the component cultivars grown in monoculture. The yield increase was significant for plots treated with one or two fungicide applications, and cultivar mixtures increased yield significantly, by 4.4% in untreated plots. The yield increase was smaller for mixtures with a high proportion of resistant cultivars. Based on the results from this study, cultivar mixtures can contribute positively to an integrated pest management (IPM) strategy, by reducing disease severity for STB and increasing yield. The most pronounced benefits from cultivar mixtures were found in fields with moderate to low fungicide input, under conditions with high disease pressure, when combining four cultivars with varying susceptibilities.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Triticum
10.
Agron Sustain Dev ; 42(5): 99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254246

RESUMO

The simplification of agricultural landscapes, particularly in the United States (US), has contributed to alarming rates of environmental degradation. As such, increasing agrobiodiversity throughout the US agri-food system is a crucial goal toward mitigating these harmful impacts, and crop diversification is one short-term mechanism to begin this process. However, despite mounting evidence of its benefits, crop diversification strategies have yet to be widely adopted in the US. Thus, we explore barriers and bridges to crop diversification for current farmers, focused on the Magic Valley of southern Idaho-a region with higher crop diversity relative to the US norm. We address two main research questions: (1) how and why do farmers in this region enact temporal and/or spatial strategies to manage crop diversity (the present) and (2) what are the barriers and bridges to alternative diversification strategies (the imaginary)? Through a political agroecology and spatial imaginaries lens, we conducted and analyzed 15 farmer and 14 key informant interviews between 2019 and 2021 to gauge what farmers are doing to manage crop diversity (the present) and how they imagine alternative landscapes (the imaginary). We show that farmers in this region have established a regionally diversified landscape by relying primarily on temporal diversification strategies-crop rotations and cover cropping-but do not necessarily pair these with other spatial diversification strategies that align with an agroecological approach. Furthermore, experimenting with and imagining new landscapes is possible (and we found evidence of such), but daily challenges and structural constraints make these processes not only difficult but unlikely and even "dangerous" to dream of. Therein, we demonstrate the importance of centering who is farming and why they make certain decisions as much as how they farm to support agroecological transformation and reckoning with past and present land use paradigms to re-imagine what is possible. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-022-00833-0.

11.
Ecol Lett ; 24(9): 1800-1813, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34143928

RESUMO

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enhancing agricultural sustainability. Here, we combine large spatiotemporal sets of historical bumble bee and agricultural records to show that increasing cropland extent and decreasing crop richness were associated with declines in over 50% of bumble bee species in the agriculturally intensive Midwest, USA. Critically, we found that high crop diversity was associated with a higher occurrence of many species pre-1950 even in agriculturally dominated areas, but that current agricultural landscapes are devoid of high crop diversity. Our findings suggest that insect conservation and agricultural production may be compatible, with increasing on-farm and landscape-level crop diversity predicted to have positive effects on bumble bees.


Assuntos
Agricultura , Insetos , Animais , Abelhas , Polinização
12.
New Phytol ; 231(1): 447-459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638170

RESUMO

Arbuscular mycorrhizal fungi (AMF) are keystone symbionts of agricultural soils but agricultural intensification has negatively impacted AMF communities. Increasing crop diversity could ameliorate some of these impacts by positively affecting AMF. However, the underlying relationship between plant diversity and AMF community composition has not been fully resolved. We examined how greater crop diversity affected AMF across farms in an intensive agricultural landscape, defined by high nutrient input, low crop diversity and high tillage frequency. We assessed AMF communities across 31 field sites that were either monocultures or polycultures (growing > 20 different crop types) in three ways: richness, diversity and composition. We also determined root colonization across these sites. We found that polycultures drive the available AMF community into richer and more diverse communities while soil properties structure AMF community composition. AMF root colonization did not vary by farm management (monocultures vs polycultures), but did vary by crop host. We demonstrate that crop diversity enriches AMF communities, counteracting the negative effects of agricultural intensification on AMF, providing the potential to increase agroecosystem functioning and sustainability.


Assuntos
Micobioma , Micorrizas , Agricultura , Raízes de Plantas , Solo , Microbiologia do Solo
13.
Glob Chang Biol ; 27(1): 151-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064906

RESUMO

Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county-level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15-fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.


Assuntos
Agricultura , Produtos Agrícolas , Mudança Climática , Fazendas , Estados Unidos
14.
J Nutr ; 151(1): 186-196, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33244605

RESUMO

BACKGROUND: Women's dietary diversity and quality are limited in low- and middle-income countries (LMICs). Nutrition-sensitive interventions that promote food crop diversity and women's access to income could improve diets and address the double burden of malnutrition in LMICs. OBJECTIVES: We examined the associations among food crop diversity and women's income-earning activities with women's diet quality, as well as effect modification by access to markets, in the context of small-holder food production in rural Tanzania. METHODS: Data from a cross-sectional study of 880 women from Rufiji, Tanzania, were analyzed. Women's dietary intake was assessed using a food frequency questionnaire. The prime diet quality score (PDQS; 21 food groups; range, 0-42), a unique diet-quality metric for women that captures the healthy and unhealthy aspects of diet, was computed. Generalized estimating equation linear models were used to evaluate the associations of food crop diversity and women's income-earning activities with PDQS, while controlling for socio-economic factors. RESULTS: Maternal overweight (24.3%) and obesity (13.1%) were high. The median PDQS was 19 (IQR, 17-21). Households produced 2.0 food crops (SD ± 1.0) yearly. Food crop diversity was positively associated with PDQS (P < 0.001), but the association was strengthened by proximity to markets (P for interaction = 0.02). For women living close (<1.1 km) to markets, producing 1 additional food crop was associated with a 0.67 (95% CI, 0.22-1.12) increase in PDQS, versus a 0.40 (95% CI, 0.24-0.57) increase for women living farther away. The PDQS increased with women's salaried employment (estimate, 0.96; 95% CI, 0.26-1.67). CONCLUSIONS: Household food production may interact with access to markets for sales and purchases, while nonfarm income also improves women's diet quality in rural Tanzania. Programs to improve women's diet quality should consider improving market access and women's access to income (source of empowerment), in addition to diversifying production.


Assuntos
Comércio , Produtos Agrícolas/classificação , Demografia , Abastecimento de Alimentos/economia , Renda , Adolescente , Adulto , Estudos Transversais , Dieta/normas , Feminino , Humanos , Pessoa de Meia-Idade , População Rural , Tanzânia , Adulto Jovem
15.
Ecol Appl ; 31(1): e02216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810342

RESUMO

Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics, PH and PP, which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower, PH and PP were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, and PH (269.5 kg) and PP (108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps.


Assuntos
Néctar de Plantas , Polinização , Animais , Abelhas , Fazendas , Pólen , Zea mays
16.
Public Health Nutr ; 24(17): 5857-5868, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528505

RESUMO

OBJECTIVES: To examine associations of household crop diversity with school-aged child dietary diversity in Vietnam and Ethiopia and mechanisms underlying these associations. DESIGN: We created a child diet diversity score (DDS) using data on seven food groups consumed in the last 24 h. Generalised estimating equations were used to model associations of household-level crop diversity, measured as a count of crop species richness (CSR) and of plant crop nutritional functional richness (CNFR), with DDS. We examined effect modification by household wealth and subsistence orientation, and mediation by the farm's market orientation. SETTING: Two survey years of longitudinal data from the Young Lives cohort. PARTICIPANTS: Children (aged 5 years in 2006 and 8 years in 2009) from rural farming households in Ethiopia (n 1012) and Vietnam (n 1083). RESULTS: There was a small, positive association between household CNFR and DDS in Ethiopia (CNFR-DDS, ß = 0·13; (95 % CI 0·07, 0·19)), but not in Vietnam. Associations of crop diversity and child diet diversity were strongest among poor households in Ethiopia and among subsistence-oriented households in Vietnam. Agricultural earnings positively mediated the crop diversity-diet diversity association in Ethiopia. DISCUSSION: Children from households that are poorer and those that rely more on their own agricultural production for food may benefit most from increased crop diversity.


Assuntos
Dieta , Abastecimento de Alimentos , Criança , Etiópia , Humanos , Pobreza , Vietnã
17.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810494

RESUMO

Maize has played a key role in the sustenance and cultural traditions of the inhabitants of the southwestern USA for many centuries. Blue maize is an important component of the diverse landraces still cultivated in the region but the degree to which they are related is unknown. This research was designed to ascertain the genotypic, morphological, and phenotypic diversity of six representative southwestern blue maize landraces. Their genotypic diversity was examined using tunable genotyping-by-sequencing (tGBS™). A total of 81,038 high quality SNPs were identified and obtained through tGBS. A total of 45 morphological and biochemical traits were evaluated at two locations in New Mexico. The varieties Los Lunas High and Flor del Rio were genetically less related with other southwestern landraces whereas diffusion between Navajo Blue, Hopi Blue, Yoeme Blue, and Taos Blue demonstrated that these landraces were genetically related. Phenotypic variability was highest for kernel traits and least for plant traits. Plant, ear, and kernel traits were fairly consistent within and across locations. Principal component analysis and tGBS showed that Corn Belt variety 'Ohio Blue' was distinctly different from southwestern landraces. Genotypic analysis displayed that southwestern landraces are genetically closely related, but selection has resulted in differing phenotypes. This study has provided additional insight into the genetic relatedness of southwestern blue maize landraces.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Zea mays/genética , Biodiversidade , Produtos Agrícolas/genética , Variação Genética , Fenótipo , Filogenia , Análise de Componente Principal , Sementes/genética , Sudoeste dos Estados Unidos
18.
BMC Genomics ; 21(1): 189, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122300

RESUMO

BACKGROUND: Diversification on the basis of utilization is a hallmark of Beta vulgaris (beet), as well as other crop species. Often, crop improvement and management activities are segregated by crop type, thus preserving unique genome diversity and organization. Full interfertility is typically retained in crosses between these groups and more traits may be accessible if the genetic basis of crop type lineage were known, along with available genetic markers to effect efficient transfer (e.g., via backcrossing). Beta vulgaris L. (2n =18) is a species complex composed of diverged lineages (e.g., crop types), including the familiar table, leaf (chard), fodder, and sugar beet crop types. Using population genetic and statistical methods with whole genome sequence data from pooled samples of 23 beet cultivars and breeding lines, relationships were determined between accessions based on identity-by-state metrics and shared genetic variation among lineages. RESULTS: Distribution of genetic variation within and between crop types showed extensive shared (e.g. non-unique) genetic variation. Lineage specific variation (e.g. apomorphy) within crop types supported a shared demographic history within each crop type, while principal components analysis revealed strong crop type differentiation. Relative contributions of specific chromosomes to genome wide differentiation were ascertained, with each chromosome revealing a different pattern of differentiation with respect to crop type. Inferred population size history for each crop type helped integrate selection history for each lineage, and highlighted potential genetic bottlenecks in the development of cultivated beet lineages. CONCLUSIONS: A complex evolutionary history of cultigroups in Beta vulgaris was demonstrated, involving lineage divergence as a result of selection and reproductive isolation. Clear delineation of crop types was obfuscated by historical gene flow and common ancestry (e.g. admixture and introgression, and sorting of ancestral polymorphism) which served to share genome variation between crop types and, likely, important phenotypic characters. Table beet was well differentiated as a crop type, and shared more genetic variation within than among crop types. The sugar beet group was not quite as well differentiated as the table beet group. Fodder and chard groups were intermediate between table and sugar groups, perhaps the result of less intensive selection for end use.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Variação Genética , Sequenciamento Completo do Genoma/métodos , Beta vulgaris/genética , Produtos Agrícolas/genética , Evolução Molecular , Genoma de Planta , Desequilíbrio de Ligação , Metagenômica , Melhoramento Vegetal , Densidade Demográfica , Locos de Características Quantitativas
19.
Proc Natl Acad Sci U S A ; 114(21): 5473-5478, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484021

RESUMO

Agricultural landscape intensification has enabled food production to meet growing demand. However, there are concerns that more simplified cropland with lower crop diversity, less noncrop habitat, and larger fields results in increased use of pesticides due to a lack of natural pest control and more homogeneous crop resources. Here, we use data on crop production and insecticide use from over 100,000 field-level observations from Kern County, California, encompassing the years 2005-2013 to test if crop diversity, field size, and cropland extent affect insecticide use in practice. Overall, we find that higher crop diversity does reduce insecticide use, but the relationship is strongly influenced by the differences in crop types between diverse and less diverse landscapes. Further, we find insecticide use increases with increasing field size. The effect of cropland extent is distance-dependent, with nearby cropland decreasing insecticide use, whereas cropland further away increases insecticide use. This refined spatial perspective provides unique understanding of how different components of landscape simplification influence insecticide use over space and for different crops. Our results indicate that neither the traditionally conceived "simplified" nor "complex" agricultural landscape is most beneficial to reducing insecticide inputs; reality is far more complex.


Assuntos
Agricultura/estatística & dados numéricos , Produtos Agrícolas , Inseticidas , Biodiversidade , California , Análise Espacial
20.
World Dev ; 125: 104682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902972

RESUMO

Many smallholder farmers in developing countries grow multiple crop species on their farms, maintaining de facto crop diversity. Rarely do agricultural development strategies consider this crop diversity as an entry point for fostering agricultural innovation. This paper presents a case study, from an agricultural research-for-development project in northern Ghana, which examines the relationship between crop diversity and self-consumption of food crops, and cash income from crops sold by smallholder farmers in the target areas. By testing the presence and direction of these relationships, it is possible to assess whether smallholder farmers may benefit more from a diversification or a specialization agricultural development strategy for improving their livelihoods. Based on a household survey of 637 randomly selected households, we calculated crop diversity as well as its contribution to self-consumption (measured as imputed monetary value) and to cash income for each household. With these data we estimated a system of three simultaneous equations. Results show that households maintained high levels of crop diversity: up to eight crops grown, with an-average of 3.2 per household, and with less than 5% having a null or very low level of crop diversity. The value of crop species used for self-consumption was on average 55% higher than that of crop sales. Regression results show that crop diversity is positively associated with self-consumption of food crops, and cash income from crops sold. This finding suggests that increasing crop diversity opens market opportunities for households, while still contributing to self-consumption. Given these findings, crop diversification seems to be more beneficial to these farmers than specialization. For these diversified farmers, or others in similar contexts, interventions that assess and build on their de facto crop diversity are probably more likely to be successful.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa